Wamne - A Static Analysis

' - Technique for
Multi-Leg Cable-Buoy
Systems

.. RN .--..’-'-.'h .

MIT Sea Grant Massachusetts MITSG 82-13
College Program Institute of Technology July 1982
Cambridge, MA 02139



A STATIC ANALYSIS TECHNIQUE

FOR MULTI-LEG CABLE-BUOY SYSTEMS

Ronald S. Harichandran
H. Max Irvine

MIT Sea Grant Massachusetts MITSG 82-13

College Program Institute of Technology Grant NA 79AA-D-00101
Cambridge, MA 02139 Project R/0-5

July 1982




-q-

Abstract

A tangent stiffness technique for the static analysis of multi-
leg cable-buoy systems is derived. In this procedure each cable is
treated as a single element. The effect of static buoyancy on sub-
merged cables is studied in detail. An approximate method of account-
ing for the current drag forces on the cables is presented. Extension
of the analysis technique to more complex systems is exemplified by
considering two specific systems. A possible design procedure for the
location of buoys is also given.
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CHAPTER 1 - INTRODUCTION

Surface-moored buoys in the oceans have been used over many cen-
turies for marking, mooring and navigational purposes. In recent years
fully submerged buoys and their mooring lines have found increasing use
as stable platforms to support various current meters and sensors for
scientific purposes. For such systems it is important to control the
excursions of the buoys under the influence of ocean currents. This
work deals primarily with the static analysis of multi-leg cable-buoy
systems. |

A system consisting of a surface-moored or submerged buoy secured
to the ocean floor by many cables is, in general, nonlinear in its load-
deflection behavior. Analytical solutions are thus intractable except
for special cases where the cables are sufficiently taut and flat such
that the system behavior is essentially linear. Numerical methods for
the solution of the more general systems have been developed in recent
years. Most of these use finite segment modelling techniques (e.g.,
Skop and O'Hara, 1970), and hence allow for variable properties and
arbitrary drag force distributions along the cables. The method devel-
oped herein is more simplistic, requiring uniform cables and a uniform
current velocity with depth. However, it possesses the advantage of
treating each cable as a single element and thus requires minimal stor-
age capacity, enabling it to be implemented in mini-computers that have
limited storage capabilities. '

The basic properties and equilibrium confiqgurations of cables sus-
pended in air are derived in the first two sections of Chapter 2. A
detailed study of the buoyancy forces on submerged cables and the result-
ing equilibrium profiles are presented in the third section. It is shown
that inextensible or incompressible cables have the same profile in
water as they do in air, but that the tensions in the cables are differ-
ent. The fundamental difference between the behavior of submerged chains
and submerged cables is identified. It is shown in the fourth section
that it is possible for some submerged cables to be in a state of axial
compression.
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A static analysis technique for submerged multi-leg cable-buoy
systems is developed in Chapter 3. The method is an adaptation of a
standard tangent stiffness solution procedure for nonlinear structural
systems. The results from the analysis are “"exact" when the only lat-
eral load acting is that on the buoy. The approximate treatment of drag
forces on the cables due to a uniform current profile is presented in
the fourth section (for relatively flat-sag cables). The final section
consists of an example illustrating the solution procedure.

Application of the static analysis procedure developed in Chapter
3 to more complicated floating cable systems is discussed in Chapter 4.
The tangent stiffness matrix reguired for the analysis is derived for
two specific systems: a multi-buoy system and a moored semisubmersible.

Finally, a possible design procedure to locate anchor points on the
seabed and determine the cable dimensions such that the buoy is posi-
tioned at the prescribed Tocation, is briefly discussed in Appendix A.




CHAPTER 2

SOLUTIONS FOR CABLES SUSPENDED IN AIR AND SUBMERGED IN WATER

2.1 The Symmetric Catenary

Consider a uniform inextensible cable, or chain, suspended in air
between two points at the same level. The cable is assumed to be devoid
of flexural rigidity and able to sustain only tension forces. Referring
to Fig. 2.1, vertical equilibrium of the isolated element of the cable
located at (x,z} requires that (Irvine, 1981):

4 (18- g (2.1)

where T is the tension in the cable, dz/ds is the sine of the angle sub-
tended to the horizontal by the tangent to the profile, and mg is the
self-weight of the cable per unit length. Horizontal equilibrium yields

L %) = 0 (2.2)
where dx=ds is the cosine of the angle of inclination. FEquation (2.2)
may be directly integrated to give

dx _
T ds ° H (2.3)

where H is the horizontal component of the tension and is constant
everywhere since no longitudinal Toads are acting on the cable. Equa-
tion {2.1) may thus be reduced to

2
d°z ds
H E_? =-mg g (2.4)
X
Note that when mg g% » the intensity of load per unit horizontal length:
is constant, the resuiting cable profile is parabolic. Using the geo-
metric constraint




A(0,0) —'—"'!'-"—- B(Rso)

dz d dz
TEE+H-§(TH§) ds

Fig. 2.1 - Definition Diagram for Cable and Forces
Acting on an Infinitesimal Element
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: 2
&2+ @ - (2.5)

the governing differential equation of the catenary takes the form

2 1/2
H 3;5 = -mg {1 + (5%)2} (2.6)

The solution that satisfies equation (2.6) and the boundary condi-
tions 1is

z = ﬁ% {cosh (E‘th&) - cosh EHQ. (% - x)} ' (2.7)

An expression for the length of a portien of the cable is

X 172
s = [ {1 + (%%-2} dx = %%— {sinh (%%%)
'Q

- sinh 72 (% - x)} (2.8)

so that, if a cable of length L0 is used to span between the supports,
the horizontal component of cable tension may be found by solving

mgl
sinh (33) = —gﬁﬂ (2.9)

for H. Note that for the inextensible cable a solution cannot exist
if Lo is not greater than §. The tension at any point is given by

T=Hcosh ™ (% - x) (2.10)

2.2 The Elastic Catenary

The profile of a suspended cable, when elastic stretch is taken
into account, is the elastic catenary. For this case it is convenient
to adopt a Lagrangian approach.

The cable éhown in Fig. 2.2 is suspended between two fixed points
A and B which have Cartesian coordinates (0,0) and (%,h) respectively.




A{o,0) *x

P(x,z;p) B(%,h)

| ™~

T

Fig. 2.2 ~ Coordinates for the Elastic Catenary and Forces
on a Segment of the Strained Cable Profile
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The unstrained Tength of the cable 1is Lo‘ A point on the cable has
Lagrangian coordinate s in the unstrained profile (i.e., the length of
cable from the origin to that point is s when the cable is unloaded).
Under the self-weight of W (= mgLo) this point moves to occupy its new
position in the strained profile described by Cartesian coordinates x
and y and Lagrangian coordinate p.

The geometric constraint to be satisfied is
2 2
dx dz,\" _ _
CONERCONER (2.11)

while, with reference to Fig. 2.2, the balancing of horizontal and
vertical forces yield

dx =

T D H
) (2.12)
r4 S

TE-v-ngd

Due to conservation of mass; the weight of that portion of the strained pro -
file shown in the figure is simply ws/Lo. The vertical reaction at the
support is V, and as before H is the constant horizontal component of
cable tensjon. A constitutive relation that is a mathematically con-
sistent expression of Hooke's law is

7= EA, (- 1) (2.13)

where E is Young's modulus and Ao is the uniform cross-sectional area in
the unstrained profile.

The end conditions at the cable supports A and B are

x = 0, z =0, p=20 at s =0 (2.14)

Lo

X = Q, z = h, p=L at s

where L is the length of the cable in the strained profile,
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The solutions of interest are those for x, z and T as functions
of the independent variable s.

1. Solutions for T = T(s) :

If equations (2.12) are squared and added, then using equation
(2.11)

1/2
T(s) = {H2 V- W fL)z} (2.15)
[+]

2. Solution for x = x{s):

Note that gﬁ-= %%-- g% and dx/dp is given as a function of T in the

first equation of (2.12), while dp/ds may also be obtained as a function
of T from {2.13). Hence substituting for T from (2.15) yields

H H

. (2.16)
72

0 {Hz 4 (V- Hs/Lo)z}

j=Nja®
Ak

Using the end condition x = 0 at s = 0, this can be integrated to

HL vV - HS/L
x(s) = P+ 42 {sinn" () - sinh” (———H—)} (2.17)
G

3. Solution for z = z(s):

I

Following a procedure analogous to that employed for x,

z(s) = U\_( 2{;—) E;‘l{:{] +( }1/2 {1 + (v__E;/_L_)Z} /:]

{2.18)
4. Solutions for H and V:

In deriving the solutions for x and z, only the end conditions at
= 0 in (2.14) were used. By satisfying the other end conditions for
x and z, the following equations are obtained:
HL

HL _ PEUTRE
P R {sinh Ty - sinn! (!Fﬂ)} | (2.19)
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WL HL 2 1/2 2, 1/2

The simultaneous soTution of these equations for H and V then
allows x, z and T to be evaluated. In general these equations can be
solved only numerically.

The solutions for an inextensible cable may be obtained by simply
neglecting all the terms containing g%—-(i.e., EAoe-m) in equations (2.15)
to (2.20). °

Alternative formulation

An alternative formulation for the elastic catenary may be ob-
tained by considering an infinitesimal element. The forces acting on an
element located at (x,z) are shown in Fig. 2.3. The length of the ele-
ment in the strained profile is dp and its weight is wdp. The angle
subtended by the tangent to the cable at (x,z) to the horizontal is ¢.

In the Timit the sine and cosine of the incremental angle %%—- dp become:

i .a_¢_ = B_¢-
3¢l =
cos (""‘ap dp) 1

Using these, the equations of equilibrium in the tangential and normal
directions at (x,z) are

3T

— +wsind = 0
P (2.22)
3¢
T—+ =
- w COS ¢ 0
Conservation of mass gives
wdp = mg ds (2.23)

where ds is the unstrained length of the element. Multiplying the




=-10-

X dx

.dp

.dp

Fig. 2.3 - Forces Acting on an Infinitesimal Element

of the Elastic Catenary
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equations of (2.22) by 2 and using (2.23), the equilibrium equations
in terms of the Lagrangian coordinate in the unstrained profile, s, are

g% +mgsing = 0

(2.24)

Note that for the orientation of the coordinate axes shown in Fig. 2.3
the quantities g%-and %% are negative.

For an inextensible cable, only the boundary conditions at the two
ends are required to be satisfied by the solution of the equations of
(2.24). For an elastic cable, in addition to the boundary condition,
Hooke's law (equation (2.13)}) also needs to be satisfied.

This latter formulation will be used in the next section to obtain
the equilibrium equations for a cable submerged in water.

2.3 Cables Submerged in Water

Buoyancy force

It is well known that a body submerged in water has, in addi-
tion to its weight, a buoyancy force acting on it. By Archimedes' Prin-
ciple this buoyancy force is equal to the weight of water displaced by
the submerged body and acts vertically upwards. However, this is the
case only when a partially or fully submerged body has all of its sub-
merged surface area exposed to the water. It is often claimed that the
buoyancy force on an element of a fully submerged cable acts vertically
upward and is equal to the weight of water displaced by the element, but
this is not so. In isolating an element from a submerged cable, the cuts
made on the cable are fictitious and no pressure forces act on the surface

area exposed by these cuts. It wasshown by Goodman and Breslin (1976) that the
buoyancy force on the element acts in a direction normal to it and is de-

pendent not only on the weight of water it displaces, but also on its in-

clination to the horizontal, its depth below the free surface of the water,
and its curvature.
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Fig. 2.4(a) shows an element located at (x,2) in a fully submerged
cable. The origin of the coordinate axes is Tocated, as before, at the
end of the cable that is at the higher level. The free surface of the
water is assumed to be at the Tevel z = -zo, where 2, > 0. If the ends
of the element are exposed to the water, then the buoyancy force on the
element is equal to the weight of water displaced and acts vertically
upward. The actual buoyancy force on the element may be found by sub-
tracting the pressure forces acting on the ends of the element from this
force.

It is convenient here to use the Lagrangian coordinates p and s in
the strained and unstrained profiles. The angle subtended by the tangent
to the cable at {x,z) to the horizontal is ¢ The tangent and normal
unit vectors at p are denoted by t(p) and n(p) respectively, and the unit
vectors in the x and z directions are § and k. The buoyancy force on the
cable element is thus

r

f = YA |- apk - {(z+zo) E(p) - (z+z°+ Az) E(p+ﬁp)}}

[ (zh20) Elpp) - (292,) %m]
=YA [- k + P AP

where ¥ is the weight of a unit volume of water and A is the cross-sec-
tional area of the cable in the strained profile.

In the Timit as Ap + 0 this becomes

F=vA [—k + = {(z-l-z ) t}] (2.25)

~

The unit tangent and normal vectors may be expressed in terms of ¢ as
follows:

- ~
cos $ 1+ sindk

>
u

(2.26)
= - sin ¢ i+ cos ¢ k

3
I

(:.In.
a2 (a0
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0
— e Ax 4
{a) Definition Diagram
5——’;—
\‘tb

)
PAg - !¢+A¢
™
P+AP

(i) Element fully exposed to water {i1) Resultant force from pressure
: forces on ends.

(b) Buoyancy effects on a curved element.

Fig. 2.4 - Itlustrations for an Element from a
Submerged Cable




Hence,

_Q.. v % - al 3 .ai
ap.{(mo) t} a © T (%) 5p

_9Z % 3t pr
= + {7+ A
3p ¢ (242p) 2% 3P

sin ¢ (cos ¢ i+ sin $ Q)

1

+ (z+zo)(-'sin ¢i +cos ¢ k) %%
Substituting this into (2.25) and noting that 1 - sin® ¢ = cos® ¢

£ a¢ 3 .
& =1A {.- cos ¢ + (z-l_-zo)_gp.}(- sin ¢ i + cos ¢ k)

- - 3 1 |
=-YA {cos ¢ (z+z°) ap } n (2.27)

Thus, as stated before, the buoyancy force on an element depends
on its inclination ¢, its depth (z+z°) and its curvature g%-and'is
directed in a direction normal to the cable.

A heuristic but more physical approach of computing the buoyancy
force on an element is as follows. Consider the curved element shown
in Fig. 2.4(b). The buoyancy force on the element if the ends of the
element were exposed to water is shown on the left. The vertical buoy-
ancy force can be resolved into tangential and normal components
B0 Ap sin ¢ and Bo Ap cos ¢ respectively. The resultant force on the
element due to the pressure forces on the ends is shown on the right,
and both tangential and normal resultants AP and PA¢ (neglecting sec-
ond order terms) exist. The pressure forces on the sides of the element
are essentially normal to the cable axis. Since the total normal force
on the element is B0 AP €o0s ¢, the resultant of the pressure forces act-
ing on the‘sides of the element is B, Ap cos ¢ + PA$. If there were no
pressure forces on the ends of the element, then this normal component
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would be the only force present due to buoyancy. In the limit, the
buoyancy force per unit length is Bo cos ¢ + P %%-, where P =YAz and
B. =vA, yielding the same result as that obtained previously by more

0
rigorous means.

Buoyancy forces in: finite segment modelling

Many numerical techniques for the static and dynamic analysis of
cable systems approximate the cables as finite segment models {see Fig.
2.5(a)). In such models each segment is assumed to be straight (i.e.,
zero curvature) so that the uniformly distributed normal buoyancy force
along its length is simply YA cos ¢ , where ¢ is the angle of the axis
of the segment to the horizontal. The buoyancy contributions due to
curvature (which have been overlooked by some authors) appear as concen-
trated forces at the segment junctions.

Consider the corner element B B] 82 of Fig. 2.5(b). The vertical
buoyancy force if the faces B B] and B B2 were exposed to the water would
be - YV k where w is the volume of the element. The concentrated buoy-
ancy force at B, F ., can be obtained by subtracting (vector1a11y) the non-
existent pressure forces in the end forces from - YV k. For most prac-
tical purposes the volume of the corner element may be neglected, in
which case F; = EYA(21+20) 5in (%?J*“YA(21+ZO)A¢ » where z., z and A9
are as defined in Fig. 2.5 and A¢ is assumed to be small. The force F,
bisects the angle ABC between the adjacent segments of the cable.

Equilibrium equations

The equilibrium equations for the element may be obtained by adding
the buoyancy term into the second equation of (2.22) to yield
EI-+ wsin¢= 0

® (2.28)

{T_ + YA(-HZO)}%{? +{w-YA)cosd = 0O

Goodman and Breslin (1976) first demonstrated the considerable simplifi-
cations obtained by introducing the “"effective tension" defined as




Z M junction

\_/

{a) Finite segment model of a cable

th

(v) The i junction

Fig. 2.5 - Buoyancy Effects in Finite
Segment Models
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T, =T+ YA(z+zo) (2.29)

Using the fact that dz/dp = sin ¢, the equations of (2.28) in terms

of T, are

¢ T, _

W"’ {w-%A) sind =0
(2.30)

gg - ) =

Te 50 + (w-YA)cos =0

Multiplying the above equations by %g-and observing that w %E = mg and
A %E = Ao (the cross-sectional area of the unstrained cable), the equi-

Tibrium equations in terms of s are found to be

STe
—=+ (mg - YAO) siné = 0

s
(2.31)
Te %%-+ (mg - YA)) cos ¢ = O
The similarity of the above equations to the equations of (2.24)
suggests that for an inextensible cable, the profile in water is also
a catenary and the required solutions may be obtained by replacing
W= mgL by W = (mg -yAy) L, in equations (2.15) to (2.20) with EA + w.
However, the tensions and the end forces computed from egjations (2.15),
(2.19) and (2.20) will be the effective forces and not the actual forces.
The actual tension is obtained by using equation (2.29). If an end of
the cable is fixed to a point on the free surface of the water (i.e.,
z=2z = 0), then at that point the effective tension and the actual
tension are identical. Equation (2.29) also suggests that if the cable
extends to a depth z where YAz is greater than Te’ then it is required
to carry compressive forces. This aspect will be discussed in more

detail in Section 2.4.

For an extensible cable, in addition to the equilibrium equations
the equations of elasticity also need to be satisfied. Consider again
the element of the submerged cable located at {x,z). In addition to the
tensile forces acting in the longitudinal direction, the element is also
subjected to lateral hydrostatic pressure forces. In cylindrical coor-
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dinates (r, 0, z), the stresses at the point (x,z) are

Ur = 09 = - Y(Z+ZO)

2.32

L1 (2.32)

17K

Assuming that the cable is a 1inear elastic solid with Young's modulus

E and Poisson’s ratio v, the -longitudinal strain of the element is

€, = %g-- 1 =-} {g; + 2wz + zo)}

1 (2.33)

.
, e, 2y - A
£ {5 *ri=)@ - 1)

The solution of equations (2.31) and (2.33) is complicated by the
appearance of z in the above equation. However, an interesting result
fs obtained for an incompressible cable for which v = 1/2.

Since ii-= %%-= 1, equation (2.33) may be reduced to
o
£-01: g
S Eﬁ;
or T, = A (.o (2.38)

The equations governing the submerged incompressible cable are now iden-
tical to the equations for an extensible cable suspended in air (equa-
tions (2.24) and (2.13)) with the weight of the cable, mg, replaced by

(mg - YAO) and the cable tension T replaced by Te‘ Thus it may be deduced
that the profile of the cable is approximately an elastic catenary. The
solutions for x, z and T, may be obtained from equations (2.15) to (2.20).
As for the inextensible cable, the real tensions may be computed from Te

using {2.29).
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Differences between a submerged cable and a submerqged chain

A rather subtle point that is worth noting here is the basic dif-
ference between the behavior of a submerged inextensible cable and a sub-
merged jnextensible chain. For an ideal chain, two adjoining links touch
only at a point. Hence each link is essentially completely exposed to
water, and the buoyancy force on it acts vertically upwards. Globally
the chain may be assumed to behave 1ike a cable with a reduced weight of
W' =mg - Bo’ where B0 is the vertical buoyancy force per unit length of
the chain. The tensions and end forces computed from equations (2.15),
{2.19) and (2.20) would in this case be the actual forces.

The simplification that occurred for an incompressible cable does
not apply for an incompressible chain for which equation {2.34) holds,
but equations (2.31) do not. The equilibrium equations for this case are
obtained by replacing mg in (2.24) by (mg - BO), where B, is the vertical
buoyancy force per unit length of chain.

Forces at the ends of cables

It is convenient to idealize the connections at the ends of the
cables as shown in Fig. 2.6. The cable is assumed to be attached to the
buoy or the seabed by an infinitesimally thin strand. Pressure forces
directed along the cable axis exist at the ends of the cable. Thus, if
the tension in the cable at point a is Ta’ then the tension T] in the
strand is T, = T, + vAz . Similarly at b, T, = T, + YA(zo+zb). By com-
paring these expressions with equation (2.29) it can be seen that T1 and
T2 are the effective tensions at a and b. For realistic connection de-
tails, localized forces and moments may exist in the connection, but the
resultant force exerted on the buoy {(or the seabed} is still the effective
tensions., Hence the force resisting external forces on the buoy is the
effective tension and not the real tension in the cable.
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Fig. 2.6 - Forces at the Ends of a Cable

b 32 b

(a) Vertical buoyant force only (b) Horizontal force on cable

Fig. 2.7 - Submerged Cables in Compression
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2.4 Cables in Compression

It is commonly assumed that cables cannot sustain compression. How-
ever, when sufficiently large lateral confining pressures are present,
cables are able to carry compressive forces (e.g., a long slender rein-
forcing bar in a reinforced concrete column). In the case of a cable
submerged in sufficiently deep water, the effective tension in it can be
smaller than the quantity YA(2+20) so that, by equation (2.2%), the actual
tension in the cable is less than zero {i.e., the cable is in compression}.
Note, however, that for incompressible cables the axial strain is propor-
tional to the effective tension and not the real tension. Thus, although
the cable may be in compression, the lateral hydrostatic pressure is large
enough such that the "squeezing” action due to it produces positive axial
strains.

As an example consider a buoy moored by a single cable in deep water
as shown in Fig. 2.7(a). It is assumed that the pressure force on the
upper end of the cable is larger than the total upward force B on the buoy.
The cable is thus in compression at point a and the compressive force in-
creases along the cable due to its self-weight.

Now consider a lateral force F applied on the cable (as in Fig. 2.7(b)).
The presence of the (pressure-induced} concentrated force PB enables
point ¢ in the cable to be in equilibrium. Note that although the config-
uratiors shown in Fig. 2.7 satisfy equilibrium and on intuitive grounds
seem correct, they may not be stable configurations. A rigorous stability
analysis will not be attempted here.

Profiles of inextensible cab1es'when compression is imminent

As mentioned in the previous section, submerged inextensible cables
have catenary profiles. The smallest tension in such a cable occurs at
the point of relative minimum of the catenary. The relative dimensions
of the catenary profiles to the depth of submergence are examined here to
find the profiles of cables that have compression imminent in them. This
is, however, not a critical condition, since it is believed that the cables
are able to sustain this compression.
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Consider the inextensible cable depicted in Fig. 2.8. The actual
tension at any point of the cable is given by

T=T,- YA(z+zo) (2.35)

where (see Section 2.1)

T, = H, cosh { Eﬂn;—l'“- % - x)}. (2.36)

and He js the solution of

{mg - yAL
sinh{ m ;'eA } = —ml—-——" (2.37)

e

Also, from equation (2.7)

d = ;:-g- cosh {(!"ﬂrﬁ;ﬂ)—’v- } (2.38)

The value of Te is smallest and (z+zo) js largest at point B. Hence
from {2.35) the real tension in the cable attains a minimum value at
B and is given by

Tmin = He -YA (d + zo) (2.39)
The 1limiting profiles for which Tmin is just equal to zero are of
interest-

For a study of the parameters defining the critical profiles, it
is advantageous to use nondimensional variables. Noting that

Ei. Eigg 85 h is the density of the cable (%t 1¢a11 steel)
= - . 0

3 5 A9 " p where o e Y yp y

and pw is the density of the water, equations (2.37) and (2.38) may be

written as
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o 2/2

.

Fig. 2.8 - Definition Diagram for the Class of
Profiles Being Studied




Lo
sinh B= B T (2.40)
2/2 - B (s
= — 2.41)
a cosh g - 1
Pw (d*2 ]
where g = -
He
~ H
_ e
and He =3 +zo

z
For given L0/£,B is found from (2.40) and gﬁg-from (2.41), If E;%—is

also known, then since §£g-= A2 ! H_ can be computed
+z d Zo v (8/2\ e
0 1+ (78)(—3—)
from the expression for 8. The Timiting condition Tmin = 0 occurs when
He = 1 and for He < 1 the cable is in compression over part of its length,
Note that the 1imiting profile is independent of the cross-sectional area
of the cable.

The values of %-, &éﬁ » the angle of the chord t5 the vertical ¢

and the angle of the upper cable end to the vertical a (see Fig. 2.9)
for the 1imiting profile are given in Table 2.1 for various values of

z z p
17%-. A plot of-—%—ég vs. 7?— is presented in Fig. 2.9 (where-5§-= %f%g— =

7.7 is used). W

The results show that for small values of ;? the critical profiles
are very steep and will seldom be realized in practice. However, for large
values of %F the critical profiles are more realistic. Thus for deeply
submerged buoys it is possible to have the mooring lines in compression
over part of their length.
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Fig. 2.9 - Plot of 42 vs. -2 for the Limiting Profiles
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%g L %/2 ¢ o
17 T d (degrees)!| (degrees)
0 2.80 0.41 22.1 7.4
1 2,22 0.55 28.7 10.9
2 1.80 0.73 36.2 15.6
3 1.53 D.96 43.8 21.4
4 1.36 1.22 50.6 27.7
6 1.18 1.81 61.1 39.9
8 1.11 2.37 67.1 48.4
10 1.07 3.01 71.6 55.5
15 1.03 4.44 77.3 65.4
20 1.02 6.05 80.6 7.5
Table 2.1: Parameters of the critical profiles for

) z
various values of if% .
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CHAPTER 3

STATIC ANALYSIS OF SUBMERGED MULTI-LEG CABLE-BUOY SYSTEMS

3.1 Introduction

Various methods exist for the static anmalysis of a cable-buoy sys-
tem consisting of a buoy (submerged or surface-moored) attached to the
seabed by an array of cables. An accurate analysis that allows for vari-
able current profiles and cable properties can only be performed by using
finite element techniques. The aim of this chapter is to develop a simpli-
fied, approximate analysis procedure for situations where the cables have
constant properties and where the current profile may be assumed to be uni-
form. The numerical technique derived herein treats whole cables as single
elements, and hence requires much less storage requirements than finite
element techniques, thereby facilitating the use of micro-computers to ob-
tain approximate solutions,

Initially the methodology is developed to analyze the system under
a8 point load applied at the buoy. The approximate treatment of the drag
forces induced on the cables by a uniform current profile is then investi-
gated.

3.2 The Tangent Stiffness Matrix for a Cluster of Cables

First consider the cable shown in Fig. 3.1{(a). Assume that point B
js fixed and that the stiffness matrix for small displacements of point A
is required. The equations defining the horizontal and vertical forces,
H and V, at A implicitly in terms of the cable properties and geometry are
{see Section 2.2):

2 = :;2 + E;Q { sinh™ () - sinh” (!ﬁﬂa} (3.1)

1/2
| HL 172 .2
g b | e b’ ] e




-28-

(™~ o |
™~

(a) Definition diagram

(b) Local and global coor- (c} A Typical cable cluster
dinate systems

actual profile seabed

T~

(d} Approximation when cable Ties partially on the seabed

Fig. 3.1 - I1Tustrations for Derivation of
Tangent Stiffness Matrices
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The stiffness equation in the Xy direction is uncoupled from the stiff-
ness equations in the Xy and X3 directions. To obtain the stiffnesses

in the latter two directions it is easier to first determine the flexi-
bility matrix and then invert it (I¥vine, 1981).

Equations (3.1) and (3.2) may be written as

2 =f (H,V)
- (3.3}
h =g (HV)
so that
_ of af
de = gﬁ-dH + §V-dV
(3.4)
dh = gﬁ dH + %3 dv
In matrix notation
de dH
= F (3.5)
dh ~ dv
where
af of
TH v 11 fi3

%‘ﬁ %?r 3 f33

is the flexibility matrix for displacements in the X1 and Xq directions.
Evaluating the individual terms

L L
Fy = o EA%* 9 {sinh“1 ) - sinn”) (K
(3.6)
i V/H —_— (V-W)/H 1/2]
, 2
{1.+ (V/H)z} {1 + ((v-w)/H)z}
-1/2 o -1/2
L v, [ M (3.7)
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A B IFRY S R

2 2
(V/H : V-W)/H
{1 + (V/H) } {1 + ((V-W)/H) }

LL
_ 39 _ V/H V-W)/H
fa3 = o7 © Eﬁi‘* w [ T2 (v-H) ) 1/2] (3.9)
{1 + (V/H) } {1 + ((V-W)/H) }

(For purposes of calculation it is best to replace the inverse hyperbolic
sine by its logarithmic representation, namely, sinh™! x = anix + (1+x2)]/2} }.

The stiffness matrix is the inverse of the flexibility matrix. Thus

| : fi3 -f13 Ky ky3
f T det F = (3.10)
-3 1 ks K33

In the Xy direction the stiffnass of small displacements is simply k22:=H/£.
Thus the complete tangent stiffness matrix at A is

k;y 0 Ky
K=1] 0 &, 0 (3.11)
k31 0 kg3

Now consider the coordinate axes shown in Fig. 3.1(b). The Tlocal
coordinate system is (x], Xos x3), while the global coordinate system is
(x, ¥y, z), where the X3 and z axes are taken to be identical. The trans-
formation from local Xy to global 59 coordinates may be described by a
transformation matrix'R defined by
X =Bx

~% g

or




X cos B sin 0 0 X
or Xo | = -sin 8 cos 6 0 y
Xq 0 0 1 z (3.12)
Since 5-1 = BT .
a7
Xg =R %

If the tangent stiffness matrix for the cable is K2 in the local system
and Eg in the global system, then

K, =R

K
~q ~

2 R

g

i .2 .
k]1 cos 6 + k22 sin" @ (k11— kzz) sing cose k]3 cose
= (k1]- k22) sing doseo k]1 sinze + k22 cosze k13 sing

L k3] cos8 k3.I sing k33

(3.13)
where ki1 ky etc. are as defined in (3.11). Note that in general the
tangent stiffness matrix is not symmetric.

For a cluster of cables meeting at a point (see Fig. 3.1{(c)) the
global tangent stiffness matrix for small displacements of the common
apex may be obtained by determining the global stiffness matrix (through
the local stiffness matrix) for each cable, and then surmming all of these

matrices.

For cases such as surface-moored buoys, where the displacement of
the apex is constrained in the z (or x3) direction, the 2 x 2 tangent
stiffness matrix corresponding to displacements in the % and y directions
consists of the first two rows and columns of the 3 x 3 matrix of (3.13).
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3.3 Static Analysis Using a Tangent Stiffness Solution Procedure

The problem to be analyzed here is that of a submerged cabie-buoy
system acted on by a point load at the buoy. This system exhibits a
stiffening type of nonlinear behavior. That is, the increment in dis-
placement for constant increments of applied load becomes successively
smaller as the buoy displaces from its initial equilibrium state. It
is assumed that the cables remain elastic and hence the nonlinearity is
solely geometric. There are various iterative and incremental solution
techniques that may be used to solve such a probiem.

The method used here is an iterative procedure that utilizes the
tangent stiffness matrix of the cable cluster, and is similar to the
well-known Newton-Raphson method for the solution of nonlinear equations.

A procedure by which the tangent stiffness matrix of a cable cluster
can be computed was outlined in the previous section. This was based on
the assumption that the cable profiles were catenaries. The profiles
of submerged cables are catenaries only if they are either inextensible
or incompressible (as shown in Chapter 2), and since the tangent stiff-
ness matrix of the submerged cable cluster is regquired in the analysis
technique developed herein it is assumed that the cables meet one of
these requirements. The weight W used in the previous section is thus
the effective weight, {(mg - YAOJLO, and the forces H and V are the effec-
tive forces corresponding to the effective tension at the upper end of
the cable (see Section 2.3).

The possibility of a long cable lying on the seabed for part of its
length is also neglected in determining the tangent stiffness matrix and
the end forces of that cable. Fig. 3.1(d) shows the profile assumed in
computing the stiffness and end forces of such a cable. The slight dis-
crepancy in the stiffness matrix is not critical since it alters only the
"path" to the solution. The discrepancy in end forces when checking equi-
Jibrium at the final displacement is of more importance, but this differ-
ence is not expected to be too significant.

Figs 3.2{a) shows a one-dimensional representation of the solutign
technique. The applied Toad is QA and the first estimate of the deflec-
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9
R — - — - — load-deflection
curve
|
B |
- [ . ‘
Q — —t u = exact solution
} —
gl |
-~ I
= I I
! j'l | >
] u*/tuz U'! u
U3
{a) Tangent stiffness solution procedure
'y
AQ
2
8= 0py - U
—u

(b} Strategy used when convergence s not obtained

Fig. 3.2 - One-Dimensional Representations of Solution Technique
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tion, u,, is found by using the initial tangent stiffness. The load

Q] required to maintain the system at equilibrium is then computed. The
tangent stiffness at point 1 is used with the unbalanced load (QA - Q])
to obtain the improved estimate of the defiection u,. The iteration is
continued until the nth estimate u, is such that the unbalanced Tload

(QA - Qn) and the increment in displacement (un - un_1) are sufficiently
small,

The problem to be solved is a three-dimensional one, but the solu-
tion procedure is essentially the same. The loads Q and displacements
u are in this case vector quantities and the tangen% stiffness is repre-
sented by a 3 x 3 matrix E. The iteration may be expressed as

~ -1
Yn " Unr * En-l (QA - gn-l) (3.14)

th estimate of the displacement,

where QA is the applied load, u, the n
Q 1 is the load that is requ1red to maintain the system at equilibrium
at the displacement u_ ., and K, is the tangent stiffness matrix at u ;-

A suitable check for convergence is

lu, - u Qy - Q
e Up-1l an % - Ol

IgAI <ep {3.15)

where | | represents the magnitude of the enclosed vectors and €1° €2
are specified error Timits.

The computation of gn requires the horizontal and vertical effective
forces H and V in local coordinates (see Fig. 3.1{a)) to be calculated
for each cable in the cluster, when the common apex is located at u .
The values of H and V are also required to compute En‘ To find these
forces the two nonlinear simultaneous equations (3.1) and (3.2) need to
be solved. 1In general, this needs to be done numerically and a two-
dimensional Newton-Raphson scheme is one possible technique. Writing
{3.1) and (3.2) as

F(H.V)

G{H,V)

f{H,V) -
g(H,V) -h

(3.16)

1l
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The Newton-Raphson iterative scheme may be expressed as

H H AH
ST + l (3.17)
n v n-1 av Jn—]
with AH . = GF, -F6
n-1 IH Ev - Iv Gy
F GH - G FH
A1 " T B - FG,
n- H% 7 "y

9
where F, = 3E'= gﬁ-etc. {same as (3.6) to {3.9)) and each of the func-

tions are evaluated at (H _;,» ¥ _;). A suitable convergence criterion

is

172

2 2

(BHp )" + (V)
2 Z

Hn+vn

<e (3.18)

Thus for each step of the tangent stiffness solution procedure, a
Newton-Raphson iteration is required to compute H and V. One drawback
with the latter technique is that fairly good initial guesses of H and
V are required for convergence. This problem can be overcome by using
the following strategy. At the nth step of the tangent stiffness pro-
cedure, the values of H and V obtained at the (n-‘i)th step are used as
initial guesses. If the Newton-Raphson procedure diverges or does not
converge within a specified number of iterations, then the increment in
load from the (n-])th step to the nth step, (QA - gn-l)’ is halved, ug
js recomputed and calculation of H and V is attempted. This can be re-
peated as many times as is necessary to obtain H and V at some displace-
ment |u| > [ U, 4 - Fig. 3.2(b) shows a one-dimensional representation
of a hypothetical case. From the point {n-1) the value of u; is obtained,
but Q; could not be obtained because the Newton-Rapson iteration to
compute H and V for one of the cables in the cluster did not converge.
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Then the load increment is halved and uﬁ computed. Again the Newton-
Raphson iteration failed for a cable and hence 02 could not be found.
The load increment is halved again and u3 calculated where the Newton-
Raphson scheme converged and 03 was ab1e to be found. The value of Uyt

is then obtained from u3, Q and the tangent stiffness at u3

When starting the problem, an initial position needs to be prescribed
for the buoy. If the initial equilibrium position of the buoy (i.e., when
no lateral loads are acting) is known, then this may be used, but any other
position is equally valid. If the end forces in the cables are unknown
at this configuration, then initial guesses need to be supplied and the
correct values of these forces determined by solving equations (3.1} and
(3.2) before the tangent stiffness iteration procedure can be commenced.

It has been found that overestimates of the horizontal and vertical forces

(H and V) at a cable end sometimes results in divergence or poor convergence.
When the prescribed initial position of the buoy is roughly in the center

of the area defined by the anchor points of the cabTes on the seabed, ini-
tial guesses of V = 0.5W and H = 0.1W to 0.2W have been often found to lead
to convergent solutions (where W is the total effective weight of the corre-
sponding cable). Note that the initial equilibrium position of the buoy

can also be found, if required, by specifying the buoyancy force on the buoy
as the only applied load.

3.4 Approximate Treatment of a Uniform Current Profile for Flat-Sag Cables

The presence of drag forces on the cables due to sea currents add com-
plexity to the problem and in general the analysis requires a finite element
solution technique. An approximate solution is presented here for the spe-
cial case when the current velocity profile is invariant with depth and when
the sags in the cables are small., The aim is to obtain equivalent loads that
are to be applied to the buoy due to drag forces on the cables.

Consider a cable segment located in a velocity field as shown in Fig.
3.3. The drag forces per unit length of the segment are due to the normal
{(in-plane and out-of-plane) and tangential velocity components with magni-
tudes given by (Berteaux, 1976):




-37-

_ . 2 .
Far = % p Cd (V cosgsing) (in-plare)

- L2
Fxo =3 P €, d(V sin 6) (out-of-plane) (3.19)

Fr = % p Cc m d(V cos 6 cos ¢)2

where P is the density of the water, Cn and Cf are the normal and tan-
gential drag coefficients, d is the diameter of the cable, V is the
current velocity, and g and ¢ are the plan and elevation angles between
the cable axis and the current direction. For most cables Cf << Cn (i.e.
Ce = 0) and the tangential drag force may be neglected.

For a flat-saq cable, an approkimate expression for the profile
can be found with the assumption that the weight of the cable is uni-
formly distributed alona the chord connecting the cable ends. It is con-
venient to use inclined coordinates x and y as shown in Fig. 3.4.

First consider the profile of the cable under self-weight alone.
Equilibrium of forces in the y-direction yields

H(x) g% = w(% - x) cos B (3.20)

where H{x} is the x-component of cable tension, % is the chord length,
£ is the inclination of the chord to the horizontal, and w the effective
weight of the cable. Equilibrium in the x direction gives

H{x) =H + wx sin B (3.21)
where H = H{%).

The cable behaves approximately like a taut string to the out-of-
plane normal load on it. Thus approximately half the total load will be
transferred to each end. The out-of-plane deflection of the cable will
be neglected here. The in-plane normal load is nonuniform and varies in
direction over the length of the cable. However, a reasonable approxi-
mation is to assume that it is uniformly distributed over the chord length
and is normal to H. The additional deflection due to the in-plane normal
load p is denoted by v. The increase in H(x} due to p is a constant, h,
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Elevation through plane of cable
Fig. 3.3 - Drag Forces on a Cable Element

H]=(H+h+w2,5'in & '_L,\ /

e

p = uniform load per unit
length perpendicular
e to chord

w = effective
weight
T " m9 YA
2=7(H+h)

Fig. 3.5 - Displacements of an Element of the Cable
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since the additional load is applied only in the y-direction. Equi-
1ibrium of forces in the y-direction now yields

(HOx) + h) 4k (pwv) =wl§ - x) cos g+ p(G - %) (3.21)

Using (3.20), (3.21) and neglecting the second-order term

dv P(%’- - x) hW(% - X} cos g
dX H+*wxsing (3.22)

) (H+ wxsin 3)2_

To complete the solution, h must be evaluated. This is done by
using a cable equation that incorporates the cable elasticity to pro-
vide a closure condition relating the changes in cable tension to the
changes in cable geometry. The displacement of an element of the cable
is shown in Fig. 3.5. If ds is the original length of the element and
ds' is its new length, then

ds2 = dx2 + dy2 (3.23)

ds' 2= {dx + du)2 + (dy + dv)2

where u and v are the x and y components of the displacements, respec-
tively. For the flat-sag cable the fractional change in length, cor-
rect to the second order of small quantities, is

' 2
ds -ds _du dx , dy dv _ 1 .dv

ST d G rd st 7 G (3.24)
The desired form of Hooke's law for the incompressible cable, with T
denoting the increase in effective tension and not the increase in actual
tension in the cable, is (from (2.34))

T _ds - ds
A, " ds (3.25)

But, to second order, T = h g%-, so that the cable equation for the

element becomes
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3
h(dEKdX) du, ax (3.26)

It is convenient to use the cable equation in theinteagrated form

hl. £
e dy dv 1 dv
= al dx + = (=) dx {3.27)
Eﬂo Io X dax Io dx

2 3
where Le = f (%;) dx is a quantity only a little greater than the chord

length 4.

Although the two terms on the right-hand side of (3.27)} can be evalu-
ated using (3.20), (3.21) and (3.22), little error is introduced by
using the Tinearized version of (3.27) (i.e., neglecting the last term)
when the in-plane normal drag forces are small compared to the existing
forces (i.e., self-weight and initial tension).

Substituting for —x-and a—-from (3.20) and (3.22) and performing
the required 1ntegrat1on in the 1inearized cable equation, the required
quantity h can be determined from

(%%J C tan g
{3.28)

o -

wLe 2
(-EA-—) tan" 8sinB + D
0

where

_ ] 1
C _2+WT) - (2v+1}) (1 +Y)

(2.Y+'| (4Y2 + ‘hﬂ‘])

]
D=gn {1 +-)
Y (v+1)¢
. H
Y W 2SIng

Equation (3.28) is arranged in nondimensional form for convenience. In
determining h the value of L, may be approximated by %,

The in-plane Toads applied on a buoy attached to the upper end of
the flat-sag cable in a uniform current is thus H] (=H+h+wgsing)
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and V], with directions that are opposite to the reactions at point A
in Fig. 3.4. The values of H and V] may be estimated as described sub-
sequently. Once H is known, h can be obtained from (3.28) and thus the
in-plane forces at A can be determined.

Consider the cable shown in Fig. 3.6 loaded with an effective weight
w. The profile of the cable is a catenary (incompressible cable) and the
effective forces H' and V' can be determined by solving simultaneously
the equations analogous to (3.1) and {3.2). The force components in the
x and y directions are

H' cos g + v' sin R (3.29)
-H' sin B+ V' cos R

-
n

H is the x-component of the reaction at B and is thus given by

H =H' - wising (3.30)
When a uniform load of intensity p per unit length is applied normal to
the chord in the negative y-direction, the reaction in the y-direction
at A is

vy =v +BR (3.31)

Note that p is the same as Fy. of {(3.19).

Also note that for the typical cable cluster shown in Fig. 3.7 the
in-plane normal drag on the cables causes an increase in tension in
cables 1 and 2, but a decrease in tension {n cable 3. The resultant of
all the equivalent Toads at the bucy due to the in-plane and out-of-plane
drag forces on the cables, together with the buoyancy and drag forces on
the buoy, should be in equilibrium at the final displaced position of the
buoy.

The techngiue described in Section 3.3 may be adopted to obtain a
solution for this case. However, the tangent stiffness matrix of each
cable (and hence the cluster) is not easy to evaluate. Although the for-
ces at point A in the cable of Fig. 3.4 are dependent only on 2 and g8,
the two equations for Hy and V; are implicit (i.e., f(H],V1,£,B ) =0,




w = effective weight

- wd sin B)
Fig. 3.6 - End Forces Due to Self Weight Only
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Fig. 3.7 - A Typical Cable Cluster
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g(H],V], %B) = 0), which makes the extraction of a tangent stiff-
ness or flexibility matrix difficult.

An alternative, ad hoc, way of proceeding is to apply loads at the
buoy to account for the current drag on the cables and then proceed with
the analysis as if no currents are present. This will give an estimate of
the required solutions. The loads applied at the buoy due to the effective
weight of a singie cable are H' and V" (see Fig. 3.6) computed from (3.29).
The in-plane loads due to the effective weight and the in-plane current
drag are Hy and Vy (see Fig. 3.4). Thus the in-plane loads to be applied
at the buoy due to current drag alone are h(=H1-H") and %%—(= V1-V"). Note
that in this case it is best to first compute the equilibrium position of
the buoy when no current 1is acting, and use this configuration to estimate
the equivalent forces on the buoy due to current drag on the cables.

Summary of Approximate Analysis under Uniform Current

The approximate analysis technique described in this section is sum-
marized here in sequential steps. Note that in all calculations the effec-
tive weight of the cables should be used.

I. Obtain solution with no current forces.

(1} Decide on an initial position for the buoy and guess the horizontal
and vertical in-plane effective forces at the upper end of each cable.
Solve equations (3.1) and (3.2) using these initial guesses and the
Newton-Raphson scheme described in Section 3.2 to obtain accurate
values of these horizontal and vertical effective forces.

(2) Specifying the applied force at the buoy gA equal to the vertical
buoyancy fdrce on the buoy, find the equilibrium position of the buoy
when no lateral loads are acting by using the tangent stiffness pro-
cedure described in Section 3.3. Note that the initial unbalanced
Toad is QA - 9’ where 9 is the resultant of the horizontal and ver-
tical cable forces computed in (1) above. Also compute the horizon-
tal and vertical effective forces H' and V' in each cable in the equi-

1ibrium position.
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11. Obtain Solution when current Toads are acting.

] .
(1) Using the quantities H and V' for the cables in the equilibrium
position without current loads, compute for each cable

(1) H' and v from (3.29)
{(ii) H andV] from (3.30) and (3.31)
(iii) h us1ng (3. 28) and H; = H + h + wesing
* n [
(iv) HI H - H =hand V[ = v, - v = B2
(v) out-of-plane forces H: which is half the total out-of
plane drag force on the cable.

(2} Add vectorially the contributions -H;, -V; and -H: from all cables
together with the buoyancy and drag forces on the buoy to obtain
the resultant applied force QA‘

(3} Now that the drag forces are included 1into QA’ the resist1ng forces
in each cable are the horizontal and vertical forces H' and V' calcu-~
Tated in I(2) above. The resultant of these is Q.

(4} Use the tangent stiffness technique described in Section 3.3 with
QA - Q as the initial unbalanced load to compute the approximate
static displacement of the buoy.

(5) The effective tensions in the cables at the displaced position can
be estimated from {2.15) and from this estimates of the real cable
tensions can be obtained using (2.29).

3.5 Example - A Tri-moored Subsurface Buoy

The static analysis of a tri-moored subsurface buoy is presented
here to exemplify the analysis procedure described in the previous sections.
The plan view of Fig. 3.8 shows the position of the anchor points. The
required data is given below.

Data

1) Coordinates of anchor points:

Point 1 = {-100, 0, -705) m
Point 2 = (50, 86.6, -702) m
Point 3 = {50, -86.6, -700) m
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Fig. 3.8 - Definition Diagram for Numerical Fxample
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2) A1l cables are identical having the following properties:

Diameter = 12.7 m (")
Youngs' modulus, E = 172.4{10)9 Pa
Length, L0 = 500 m
Density = 7850 kg/m>
Normal drag co- = 0.7

efficient, Cn

3) Properties of the spherical buoy are:

n

Quter diameter 3.0m

Weight = 43 kN (i.e., 20 mm thick steel shell)
Drag coeffi-
cient, Cn = 0.7

4. A current of 1 m/s (2 knots) is acting in the positive x-

direction.
5) z-ordinate of free surface = 300 m.
Acceleration under gravity, g = 9.8] m/52

Density of sea water = 1020 kg/m3.

Applied load on buoy

weight of water displaced by buoy
- weight of buoy

95.7 kN
2.5 kN

(2500, 0, 95700) N

Net upward force

Drag force

.". Applied force
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Solutions

(a)

(b)

(c)

Null current (i.e., no drag forces)

Initial guess for position of buoy = (0, 0, -300).
With the only applied load being a vertical upward force of 95.7 kN,
the equilibrium position of the buoy = (-12.18, 5.23, -211.94)m.

Maximum stresses in the cables (under the actual tensions and not
the equivalent tensions) in the equilibrium configuration are:

Cable 1 - 314 MPa
Cable 2 - 249 MPa
Cable 3 - 206 MPa

(Note: 414 MPa = 60 ksi).

Drag forces on buoy only

Neglecting the drag forces on the cables, the equilibrium position
of the buoy = (-11.23, 5.21, -211.93) m.

Maximum stresses in the cables in the equilibrium configuration are:

Cable 1 - 375 Mpa
Cable 2 - 218 Mpa
Cable 3 - 175 MPa.

Drag forces on buoy and cables.

Using the approximate treatment presented in Section 3.4, the
equivalent loads to be applied at the buoy due to current drag on
the cables are:

Cable 1 - (0.7, 0.0, -2.6) kN
Cable 2 - (0.6, -0.4, 1.7) kN
Cabte 3 - (0.6, 0.5, 2.1) kN

Together with these forces and the drag force on the buoy, the equi-
1ibrium position of the buoy = (-10.53, 5.26, -211.91) m.
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Maximum stresses in the cables in the equilibrium configuration are:

Cable 7 - 424 MPa
Cable 2 - 194 MPa
Cable 3 - 160 MPa

Comments

The results show that the excursion of the buoy due to the current
is small. This is to be expected, since the net upward force on the buoy
is much larger than the lateral drag forces. Buoys submerged to greater
depths will be heavier (since they will have to withstand greater pres-
sures) and subsequently the ratio of horizontal to vertical loads on them
will be larger, resulting in greater excursions.

The effect of the drag forces on the cables is quite significant.
The horizontal displacement of the buoy and the increase in the maximum
stress in cable 1 due to drag on the cables are about 3/4 of the corre-
sponding quantities due to drag on the buoy alone.

Note that under the current load, the stresses in cables 2 and 3

are reduced from their initial values, while the stress in cable 1 is
increased. The stress in cable 1 only slightly exceeds 60 ksi, which is

a reasonable value for the maximum allowable stress.
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CHAPTER 4 -

APPLICATION OF STATIC ANALYSIS PROCEDURE TO OTHER CABLE SYSTEMS

The tangent stiffness solution technique developed in Chapter 3
can be applied to more complex cable systems with a larger number of
degrees of freedom. The two particular cases considered here are multi-
buoy systems and moored semisubmersibles.

4.1  Multi-buoy Systems

For submerged or surface-moored multi-buoy systems the extension
of the analysis procedure developed in Chapter 3 is quite straightforward.
Every additional buoy in a system proportionally increases the number of
degrees of freedom and hence the size of the tangent stiffness matrix of
the system. The analysis procedure remains essentially the same.

As an example consider the two-buoy system shown in Fig. 4.1(a).
In general the system has six degrees of freedom corresponding to the
X, ¥y and z displacements of each buoy. The tangent stiffness matrices
for cables 1 and 2, for small displacements of buoy 1 in the x, y and z
directions, can be computed as described in Chapter 3 (i.e. by first com-
puting the stiffnesses in local coordinates and then performing the neces-
sary coordinate transformations). Similarly the stiffness matrices for
cables 3 and 4 for small displacements of buoy 2 can also be determined.
Let these 3 x 3 stiffness matrices be denoted by 51, i=1, 2, 3, 4.
Cable 5 has to be treated differently because it results in coupling between
the two buoys.

Fig. 4.1(b) shows an in-plane elevation of cable 5 and the equilibra-
ting end forces on it. As before, the two equations that relate the dimen-
sions L and h5 to the end forces at the higher end H and V are of the
form

u

g = f (H, V)

h5 =49 (Hs V)

(4.1)

where the functions f and g are as specified in (3.1) and (3.2). Assuming
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(a) Schematic diagram

v —
h
i I

"

f

1

(b} In-plane elevation of cable 5

Fig. 4.1 - Two-buoy System
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that end 1 is fixed, the stiffness matrix relating the increments in
forces at end 2 to the increments of displacements at this end (in the
directions x,, Xo and x3) is

kip 0 K3
Kapg=| O kyp 0
K3y 0 kg3
(4.2)
- e
¥ 0 -
1 H
5| 0 og o
- Qﬁ. 0 o
| "3 3H |

E%—etc. are evalu-

_of 3ag af . 3 :
where D = = 53— Vi gﬂ, and each of the functions "
ated at (H, V). Considerations of the equilibrium of the cable gives the
stiffness matrix relating the increments in forces at end 1 to the incre-

ments of displacements of end 2 as

K

Kig = - Ky (4.3)

The corresponding stiffness matrices for small displacements of
end 1 can be obtained by rewriting the equations of (4.1) in terms of the
forces at this end,Hl and V'. From equilibrium H = H' and V = W - v',
where W is the total weight of the cable. Substituting for H and V in the
specific forms of the functions f and g, the following result is obtained:

£, v
g (HV)

£ WV )
g (H,W-v")

Ly
h

(4.4)

5



52—

The function f(H, V) and g(H, V) also have the following proper-

ties:
af _ of vy . af - af 4 '
E'H'(Hsv) ﬁ(H’V), "B'V(Hyv)"EV(Hsv)

(4.5)
ig_ =_ig_ 1 |-a =3 3 |
F V) =S S ) =5, V)
af . af .
where Eﬁ'(H’ V) means that the function R evaluated at (H, V), etc.

By using the above identities and performihg the necessary coordin-
ate transformation (since H' is in the negative X, direction), the stiff-
ness matrix relating the increments in the forces at end 1 to increments
in the Xqs X5 and X3 displacements at end 1 can be shown to be

n 13
K=l 0 ¥k O (4.6)
kyp 0 -ky3

where k1], k]2 etc. are the same values as in (4.2). The stiffness matrix
relating the increments in forces at end 2 to the increments in displace-

ments of end 1 is
K = - K (4.7)

Let R be the rotation matrix describing the transformation of the
(x], Xos x3) coordinate system to the {x, y, z) coordinate system, and let

5 T
K = R KR (0.8)
and 4.8
5 T
K = RK,R

Noting that'Ki stands for the tangent stiffness matrix of cable i (i = 1,
2, 3, 4) in the qlobal (x, y, z) coordinate system, the 6 x 6 tangent stiff-

ness matrix of the entire system is
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(K] + k2 4 K5j -
K= (4.9)

5 (K3 + K4 + Kg)

=

-5

—

The static solution procedure is essentially the same as that de-
scribed in Chapter 3. The iterative formula is (see equation 3.14)

Up " Upa ¥ E;l1 (QA - gn-T) (4.10)

For large matrices K the inversion required above may be more efficiently
done by first solving the system of Tinear simultaneous equations

K

Lo LN QA - 9n-1

to find Au._, and then obtaining

= +
Yn Yn-1 AEn—I

4.2 Moored Semisubmersibles

The static analysis of a moored semisubmersible is in general diffi-
cult due to the deformation of the structure itself under the buoyancy
forces and the forces applied by the cables. An iterative tangent stiff-
ness solution procedure can be readily applied to the problem if the semi-
submersible is assumed to be rigid.

Consider a rectangular semisubmersible attached to the seabed by
four clusters of cables as illustrated in Fig. 4.2. Let the tangent sfiff-
ness matrix of each cable cluster corresponding to increments of the x, ¥y
and z displacements of the apex of the cluster be

i j i
kp - k2 ki

o k;1 k%z k;3 s i=1,2,3,4 (4.11)
~ i i i
k31 K32 ka3
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Fig. 4.2 - Rectangular Moored Semisubmersible
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The complete system has six degrees of freedom, corresponding to the

three displacements u, v, w and the three rotations, Bz eyz"axy of

the rigid semisubmersible. The 6 x 6 tangent stiffness matrix, due to

the stiffnesses of the four clusters only (i.e., neglecting, for the moment,
the bouyancy effects on- the semisubmersible)}, can be easily assem-
bled using the tangent stiffness matrix of each cluster. For example, a
small rotation dexz lowers the points 1 and 4 and raises the points 2 and

3 by %—dexz. The stiffness terms corresponding to this rotation are the
coefficients of dexz in the forces Fx’ Fy, 7 Myz’ Mxy
required to obtain this rotation while all the remaining displacements

and rotations are maintained at zero. The assembled tangent stiffness

matrix is

Fz and moments Mx

_ .S . .
where
1 n
e . i=1,2,3; j=1,2,3
ngl k1J ] !
a (- k'| + kz . k3 k4 i=4; j=132|a3; P=3; C|=j
Z% pg 7 Tp Pg ~ "pq ( - -
i=1,2,3; j=4; p=i; g=3
1—--5; j=] 3233; p=3; =j
Y E AR S { !
Pg Pq Pq Pq i=1,2,3; j=5; p=i; q=3
a 1 2 3 4 . . .
5 =kt + - =6; j=1,2,3; p=2; g=s=j; r=i
k?j =] [2 ( kpq kpq kpq kpq) [1 6; j=1,2,3; p=2; g=s=j; r
b ‘! 2 3 4 - » RS A =1+ * -
+ Bkl w ke - K- krs)] i=1,2,3; j=63 per=i; qe?; s=
2 3 n . .
a k i=4; j=6; p=r=3; q=2; s=1
[T n=1 Pq
ab 1 2 3 4 P T T G S
¢ 3 (kg o+ K-+ k)] Lie6; e85 p=2; gms=3; p=1

ab , 1 2 3 4 . .
- + - =5- =6; == ; =23 =]
[1 (kpq = kpq * kng = Kpg! 1255 J=6; p=r=3; =2 s
2

kn ] i=6; j=5; p=2; g9=s=3; r=1




2
a 1 2 3 4 Co_ s L
Flkag * ka3 + k33 - Kk33) i=3=4
b? (k) -k i3, vl ) =j=5
4 V733 7 33 T K33 7 K33 t=J-=
4 4
2 2
[a Joyn b 7 n
a LoD k
oo T i=i=6

Buoyancy effects on the rigid semisubmersible

If the vertical upward buoyancy force on the platform in the ini-
tial rest position is included in the externally applied loads, the
excess buoyancy forces and moments due to displacement of the rigid semi-
submersible can be accounted for by replacing the water by equivalent
springs as shown in Fig. 4.3(a). In the following derivations, the
rotations Byz and eyz of the platform are assumed to be small so that
cos 8 ~ 1 and sin 0 ~ 0. As a result of this assumption, the forces
and moments exerted on the platform by buoyancy effects are linearly re-
lated to the corresponding displacements and rotations.

Consider again the four-legged semisubmersible shown in Fig., 4.2,
The legs of the semisubmersible are cylindrical with radius R. The deck
is assumed to be sufficiently clear of the water so that it will never
submerge. Displacements and rotation in the horizontal plane {u, v and
exy) do not result in any excess buoyancy forces. A ve;tica] upward
displacement of w results in an excess force FZ = -47yYR"w, where vy is
the unit weight of the water. The effects of rotation are slightly more
complex. Fig. 4.3(b) shows the semisubmersible under a rotation N The
net buoyancy force from the two legs to the left of the origin is F], while
the force from the other two legs is F2' The distances to the 1ine of
action of these forces from the z-axis are e and e, respectively. The
buoyancy forces act through the center of volume of the submerged part
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F4

P
k f:ikxz

(a) Equivalent model accounting for excess
buoyancy forces

(b) Semisubmersible rotated about the origin

2’
|~
'~ R (b-a
y b * = 3 57a)
d Zl I
c =
\ I - Y. =90
-R ' bta
center I :[—7— +
of volume
(b-a 2 ]
' Tém(b+a
X

(c) Center of volume of immersed portion of leg

Fig. 4.3 - Buoyancy Effects on the Semisubmersible
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of the legs. Using the coordinates of the center of volume given in
Fig. 4.2(c}, and assuming that O, is small,

= 7R2Y(2h + ae, )

-n
j—
1

(4.13)
nRzy(2h - asxz)

-
{]

The resultant counterclockwise moment about the origin is

My = - Fy ey * Fooe,

XZ
2R9 2Ro
a R a R Xz
1[?*@5 (s, )] [’Z'ﬁ(7—)’h-aexz]

- I3 + IR

= -F

Prior to the imposed rotation the net buoyancy force was FRZY and the
moment of this force about the origin was zero. Thus the excess buoyancy
force on the semisubmersible due to the rotation 6y 2 is zero and the
excess moment is sz. Similarly for a rotation 9 ,_, the excess moment

yz
due to buoyancy is

IS SN RV R
M, = -3+ r(®)TAR

From the above results it can be seen that for the model illuystra-
tions in Fig. 4.3(a) the translational spring has a st1ffness k 4ﬂYR2

and the rotational springs have stiffnesses k [2 ij and
[2 + E)Z] YR4 The force- d1sp1acement reTat10ns due to the ex-
cess buoyancy effects can be described by means of the diagonal stiffness
matrix (corresponding to u, v, w, 8,79 eyz, exy)
= B 1 = 1 =
g " [kij] . j l1tob, j=11%tob (4.18)
B"‘-
where k33 = -k
KB o= -k

44 XZ
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B _
kgg = - kyz

and all other k?j are zero.

Analysis procedure

A suitable analysis procedure is, again, the tangent stiffness tech-
nique described in Chapter 3. The tangent stiffness matrix of the com-
plete system is

K=Kk +K (4.19)

~C B

where K° and EB are as given in (4.12) and (4.18). The iterative formula

to be used is

= +AU (4.20)

Up = Ypoy AU

where Au is the solution of

~n-1

Kn-1840-1 = % - 00y

T ).

(Note that u' = {u,v,w,8

xz'’ eyz ? exy

If the total weight of the platform is W , the x and ¥ coordinates of
the center of mass is Xy and Iy the initial submerged length of the legs
is h (see Fig. 4.2), the components of the current drag force in the x
and y directions is Fx and Fy, and the horizontal twisting moment due to
eccentricity of the drag forces is Mxy’ then the (constant) applied force

vector is

Qy= |4mR%h - W } (2.21)




If the x, y and z components of the force required_to ho]d each
cluster at the configuration described by U1 is Pl, P;, P; (i=1,2,3,4},
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{computed as in Chapter 3), then

Thus, at each step of the iteration QA -Q

load.

f

\

[% (Pl +p2 - p3 o ph

—
[ O -9
—]
-
M s

[[fre B =
—r
‘<-U..|.

e

R E-Y
-
[ o "

—de
ol

a i 2 3 4
g =Py P+ P - )

b 1 2 3 4
§'(-Pz - Pz + Pz + Pz)
X X X
b ] 2 3 4
+ 2 p! s + - ‘

2 ( Py py Py Pyz-"
)

-n-1

a §B Un-1

represents the unbalanced
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"APPENDIX A

A DESIGN PROCEDURE FOR MULTI-LEG CABLE-BUOY SYSTEMS

Qutline of the Problem

The design problem of a submerged (or surface-moored) buoy usu-
ally consists of determining suitable dimensions for the mooring cables,
and the locations of anchor points in the seabed, such that the buoy is
located at a specified position (typically in a null current). Addi-
tional constraints are that the maximum stresses in the cables and the
excursion of the buoy from the initial position should be within allow-
able limits under the design current (and wave) conditions.

This chapter deals with the preliminary design problem of obtaining
the dimensions of the mooring cables and the location of the anchor points.
Estimates of the excursion of the buoy and the maximum stresses in the
cables under design loads can then be obtained using the static analysis
procedure discussed in Chapter 3, to check whether the constraints are
satisfied. It should be noted that maximum cable stresses are sometimes
attained under dynamic excitation, and hence a dynamic analysis of the
system should aiso be performed. If the system does not satisfy the de-
sign constraints, then it needs to be redesigned with larger cables and/or
a different cable arrangement, resulting in greater latera] stiffness.

A Preliminary Design Procedure

The design procedure suggested here relies on having cable arrange-
ments that possess some symmetry, in plan view, about a horizontal x-axis
(the direction of the dominant current, say). Fig. A-1{a) shows the plan
views of two typical cable arrangements. The cables below the k-axis lie
along the Tines of reflection @bout the x~ax1‘s) of the cables above the
x-axis. Further, all the cables on the left side of the y-axis (group 1)
are restricted to have the same cross-sectional area A], end forces V]
and H, (and hence also the angle B1 = tan-] HIXV]) (See Fig. 5.1(b)),
Young's modulus E1 and Poisson's ratio Vis while the cables on the right
side of the y-axis (group 2) have corresponding quantities AZ’ V2, Hz’
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Fig. A.1 - Definition Diagrams for Typical Cables
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Bps E2 and Voo Due to this particular arrangement, equilibrium of the

buoy in the y-direction is ensured.

The design procedure now consists of the following steps.

1)

2)

3)

4)

Choose the plan angles of the cables on one side of the x-axis
and the ratio VI/VZ. (These choices will usually be influenced
by the directions and magnitudes of dominant currents and waves},

Choose the angle B] and determine By SO that equilibrium is satis-
fied in the z-direction. For example, in the four-cable cluster
of Fig. A-1{a), the angle By (for cables 3 and 4) is related to

B'I by

-1 V2 CoS 64 * COS Oy
By = tan { VT (COS 5, ¥ cos 82) tan g, } (A1)
v-
Using the maximum cable tensions T. = cos1s- (i =1, 2}, determine
i

suitable cable cross-sections.

The end forces V and H and the cable properties define the catenary
profile of each cable. Check that all profiles intersect the
seabed. The point of intersection of the cable profile and the
seabed is the anchor point for each cable. If any profiie does

not intersect the seabed, then that profile is too shallow. De-
crease gy and repeat steps 2 to 4 until all cables intersect the
seabed.

In determining the anchor points in step 4 above, a numerical procedure
is required. Let a cable under consideration have self-weight w per unit
Tength, Young's modulus E and cross-sectional area A. Referring to Fig.

A-1(a),

let the curve length AB be L and AC be Lo' If the end forces of A

are H and V, then the cable profile in terms of the unstrained Lagrangian
coordinate s is described by

«{s) = %§b+ % [éinh"] (%) - sinh”] (V a wsﬂ
z(x) E%go( ) (A2)

zi::
——
]
+
"'-'h
1
——
—
+
——
-
1
=
(7]
S
M
S
—
—
L]




-Ad-

The curve length AB js L = %g—. If the seabed profile beneath the
cable is given by zs(x), then by successively checking z - z, for s = nas,
n=1,2, ... {as = T%U-say), the interval in which the profile intersects
the seabed can be determined. By successive bisections within this inter-
val, the Tocation of the anchor point can be estimated to the required
level of accuracy.

Note that this design procedure may not give the most economical solu-
tion, but it enables the buoy to be positioned (in a null current) at a
fixed location. It should be recognized, however, that accurate position-
ing in the offshore environment is often a difficult task and reasonable
accuracy is all that can be expected.
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APPENDIX B - A FORTRAN COMPUTER PROGRAM

Listing of Program

Sample Output from Program
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