
~ ~ ~

~ ~

t ~ ~~ ~ ~ ~
~ ~ a f



A STATIC ANALYSIS TECHNIQUE

FOR MULTI-LEG CABLE-BUOY SYSTEMS

MIT Sea Grant

College Program

Ronald S. Harichandran
H. Max Irvine

Massachusetts
Institute of Technology
Cambridge, MA 02139

MITSG 82- 13
Grant NA 79AA-D-00101
Project R/0-5
July 1982



Abstract

A tangent stiffness technique for the static analysis of multi-

leg cable-buoy systems is derived. In this procedure each cable is

treated as a single element. The effect of static buoyancy on sub-

merged cables is studied in detail. An approximate method of account-

ing for the current drag forces on the cables is presented. Extension

of the analysis technique to more complex systems is exemplified by

considering two specific systems. A possible design procedure for the

location of buoys is also given.
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CHAPTER 1 � INTRODUCTION

Surface-moored buoys in the oceans have been used over many cen-

turies for marking, mooring and navigational purposes. In recent years

fully submerged buoys and their mooring lines have found increasing use

as stable platforms to support various current meters and sensors for

scientific purposes. For such systems it is important to control the

excursions of the buoys under the influence of ocean currents. This

work deals primarily with the static ana'lysis o$ multi-'leg cable-buoy

systems.

A system consisting of a surface-moored or submerged buoy secured

to the ocean floor by many cables is, in general, nonlinear in its load-

deflection behavior. Analytical solutions are thus intractable except

for special cases where the cables are sufficiently taut and flat such

that the system behavior is essentially linear. Numerical methods for

the solution of the more general systems have been developed in recent

years. Most of these use finite segment modelling techniques  e.g.,

Skop and O' Hara, 1970!, and hence allow for variable properties and

arbitrary drag force distributions along the cables. The method devel-

oped herein is more simplistic, requiring uniform cables and a uniform

current velocity with depth. However, it possesses the advantage of

treating each cable as a single element and thus requires minimal stor-

age capacity, enabling it to be implemented in mini-computers that have

limited storage capabilities.

The basic properties and equilibrium configurations of cables sus-

pended in air are derived in the first two sections of Chapter 2. A

detailed study of the buoyancy forces on submerged cables and the result-

ing equilibrium profiles are presented in the third sect~on. It is shown

that ~nextensible or incompressible cables have the same profile in

water as they do in air, but that the tensions in the cables are differ-

ent. The fundamental difference between the behavior of submerged chains

and submerged cables is identified. It is shown in the fourth section

that it is possible for some submerged cables to be in a state of axial

compression.



A static analysis technique for submerged multi-leg cable-buoy

systems is developed in Chapter 3. The method is an adaptation of a

standard tangent stiffness solution procedure for nonlinear structural

systems. The results from the analysis are "exact" when the only lat-

eral load acting is that on the buoy. The approximate treatment of drag

forces on the cables due to a uniform current profile is presented in

the fourth section  for relatively flat-sag cables!. The final section

consists of an example illustrating the solution procedure.

Application of the static analysis procedure developed in Chapter

3 to more complicated floating cable systems is discussed in Chapter 4.

The tangent stiffness matrix required for the analysis is derived for

two specific systems: a multi-buoy system and a moored semisubmersible.

Finally, a possible design procedure to locate anchor points on the

seabed and determine the cable dimensions such that the buoy is posi-

tioned at the prescribed location, is briefly discussed in Appendix A.



CHAPTER 2

SOLUTIONS FOR CASLES SUSPENDED IN AIR AND SUSNERGED IN WATER

2.1 The S etric Catenar

Consider a uniform inextensible cable, or chain, suspended in air

between two points at the same level. The cable is assumed to be devoid

of flexural rigidity and able to sustain only tension forces. Referring

to Fig. 2.1, vertical equilibrium of the isolated element of the cable

located at  x,z! requires that  Irvine, 1981!:

Ws Ta~! = «

where T is the tension in the cable, dz/ds is the sine of the angle sub-

tended to the horizontal by the tangent to the profile, and mg is the

se'lf-weight of the cable per unit length. Horizontal equi'librium yields

d  T dx! �-2!

where dK=4s is the cosine of the anqle of inclination. Equation �.2!

may be directly integrated to give

T~ = Hdx
�-3!

where H is the horizonta1 component of the tension and is constant

everywhere since no longitudinal loads are acting on the cable. Equa-

tion �.1! may thus be reduced to

dz ds
2

H � p=-mg~
dx

 z. o!

Note that when mg ~ , the intensity of load per unit horizontal 1ength~ds
Wx '

is constant, the resulting cable profile is parabolic. Using the geo-

metric constraint



A o,o!

dx
T ~

Fig. 2.1 - Definition Diagram for Cable and Forces

Acting on an Infinitesimal Elenent



-5-

2

 f;! +  p;! �. 5!

the governing differential equation of the catenary takes the form

d z dz 2 1/2
H~= -mg 1+  ~!

dx
�.6!

z = � cosh  @! - cosh +  - - x!M m60 m

mg M 2 �. 7!

An expression for the length of a portion of the cable is

dz 2 '~' H m ~s = ] 1+   � ! d"= � sinh  ~!
dx mg zH

'0

- sinh "  -- x!
H 2 �.8!

so that, if a cable of length L is used to span between the supports,
0

the horizontal component of cable tension may be found by solving

sinh  +! = ~ �.g!

for H. Note that for the inextensible cable a solution cannot exist

if L is not greater than a. The tension at any point is given by

T = H cosh ~   � - x!ma

H 2 �.10!

2.2 The Elastic Catenar

The profile of a suspended cable, when elastic stretch is taken

into account, is the elastic catenary. For this case it is convenient

to adopt a Lagrangian approach.

The cable shown in Fig. 2.2 is suspended between two fixed points

A and B which have Cartesian coordinates �,0! and  R,h! respectively.

The solution that satisfies equation �.6! and the boundary condi-
tions is
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A o,o!

 <,h!

'Ws

l

Fig. 2.2 - Coordinates for the Elastic Catenary and Forces

on a Segment of the Strained Cable Profile



The unstrained length of the cable is L . A point on the cable has
0

Lagrangian coordinate s in the unstrained profile  i.e., the length of
cable from the origin to that point is s when the cable is unloaded!.
Under the self-weight of W  = mgL ! this point moves to occupy its new

0
position in the strained profile described by Cartesian coordinates x

and y and Lagrangian coordinate p.

The geometric constraint to be satisfied is

dx 2 dz
 ~p! +  ~! �.»!

while, with reference to Fig. 2.2, the balancing of horizontal and

vertical forces yield

T~= H
�.12!

T~= V- W~dz s

P
0

T= EA  g-- !! �.13!

where E is Young's modulus and A is the uniform cross-sectional area in

the unstrained profile.

The end conditions at the cable supports A and B are

x=0, z=0,

z=h,

p=0

p

ats=0

at s = L
�.>4!

where L is the length of the cable in the strained profile.

Due to conservation of mass,' the weight of that portion of the strained pro-
file shown in the figure is simply Ws/L . The vertical reaction at the

0

support is V, and as before H is the constant horizontal component of

cable tension. A constitutive relation that is a mathematically con-

sistent expression of Hooke's law is
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The solutions of interest are those for x, z and T as functions

of the independent variable s.

1. Solutions for T = T s!

If equations �.12! are squared and added, then using equation

�.11!

2 2 1/2
T s! = H + V-W~! �.15!

dx H
ds EEE

H2+
�.1e!

2 2
 V - Ws/L !

0

Using the end condition x = 0 at s = 0, this can be integrated to

HL 1 y 1 V Ws/L ~!j �.17!

3. Solution for z = z s!:

Fo11owing a procedure analogous to that employed for x,

V 2 1/2 V- Ws/L 2
 Z! - 1   '!

HL

z s! = ~  W � ~! + ~W V s o

0 0

�.18!
4. Solutions for H and V:

In deriving the solutions for x and z, only the end conditions at
s = 0 in �.14! were used. By satisfying the other end conditions for

x and z, the following equations are obtained:

L HL
a = � + � sinh   � ! � sinh   !

EA W H H
0

�.1g!

2. Solution for x = x s!:

dx dx . doNote that ~ = ~ . ~o and dx/dp is given as a function of T in the
first equation of �.12!, while dp/ds may also be obtained as a function

of T from �.13!. Hence substituting for T from �.15! yields



WL y 1 HL y 2 2 1/2
~E  M 2! V  H! �. 2O!

The simultaneous solution of these equations for H and V then

allows x, z and T to be evaluated. In general these equations can be

solved only numerically.

Alternative formulation

An alternative formulat1on for the elastic catenary may be ob-

tained by considering an 1nfinitesimal element. The forces acting on an

element located at  x,z! are shown in Fig. 2.3. The length of the ele-

ment in the strained profile is dp and its weight is wdp. The angle

subtended by the tangent to the cable at  x,z! to the horizontal is y.
In the lim1t the sine and cosine of the 1ncremental angle ~~ - dp become.

3P

sin  ~ dp! = ~ dp
ap ap

�.21!

cos   � dp! = 13 j!
ap

Using these, the equations of equilibrium in the tangential and norma1

directions at  x,z! are

� + w sin P = 0aT

ap �. 22!

T � +wcos $ = 03$

pp

Conservation of mass gives

� 23!wdp = mg ds

where ds is the unstrained length of the element. Multiplying the

The solutions for an inextensible cable may be obta1ned by s1mply

neglecting a] 1 the terms containing EEE-  i .e., EA ~ ! in equations   2. 15 !
0

to �.20!.



-10-

dx +3 Bp
T + � ~ dp3T

3p

wdp

Fig, 2.3 � Forces Acting on an Infinitesimal Element

o f the El asti c Catenary
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equations of �.22! by ~ and using �.23!, the equilibrium equationsdo

in terms of the Lagrangian coordinate in the unstrained profile, s, are

37~+mg sin ! = 0
s

�.24!
T-++mg cos 4 = 0

as

Note that for the orientation of the coordinate axes shown in Fig. 2.3
the quantities ~ and ~~ are negative.

as

For an inextensible cable, only the boundary conditions at the two

ends are required to be satisfied by the solution of the equations of

�.24!. For an elastic cable, in addition to the boundary condition,
kooke's law  equation �.13!! also needs to be satisfied.

This latter formulation will be used in the next section to obtain

the equilibrium equations for a cable submerged in water.

2.3 Cables Submer ed in Water

It is well known that a body submerged in wat:er has, in addi-

tion to its weight, a buoyancy force acting on it. By Archimedes' Prin-

ciple this buoyancy force is equal to the weight of water displaced by

the submerged body and acts vertically upwards. However, this is the

case only when a partially or fully submerged body has all of its sub-

merged surface area exposed to the water. It is often claimed that the

buoyancy force on an element of a fully submerged cable acts vertically

upward and is equal to the weight of' water displaced by the element, but

this is not so. In isolating an element from a submerged cable, the cuts

made on the cable are fictitious and no pressure forces act on the surfac~

area exposed by these cuts. It was shown by Goodman and Breslin �976! that the
buoyancy force on the element acts in a direction normal to it and is de-

pendent not only on the weight of' water it displaces, but also on its in-

clination to the horizontal, its depth below the free surface of the water,
and its curvature.



Fig. 2.4 a! shows an element located at  x,z! in a fu1ly submerged
cable. The origin of the coordinate axes is located, as before, at the
end of the cable that is at the higher level. The free surface of the
water is assumed to be at the level z = -z , where z > 0. If the ends

0' 0�
of the element are exposed to the water, then the buoyancy force on the
element is equa1 to the weight of water displaced and acts vertically
upward. The actual buoyancy force on the element may be found by sub-
tracting the pressure forces acting on the ends of the element from this
force.

It is convenient here to use the Lagrangian coordinates p and s in
the strained and unstrained profiles. The angle subtended by the tangent
to the cable at  x,z! to the horizontal is y. The tangent and normal
unit vectors at p are denoted by t p! and n p! respectively, and the unit
vectors in the x and z directions are i and k. The buoyancy force on the
cable element is thus

F = yA - apk -  z+z ! t p! -  z+z + a,z! t p+hp!

 z+z +hz! t p+4! -  z+z ! t p
=+A - k+ 0

hp

~here Y is the weight of a unit volume of water and A is the cross-sec-
tiona1 area of the cable in the strained profile.

In the limit as Ap ~ 0 this becomes

F =yA -k+ �  z+z ! t  z.z5!

The unit tangent and normal vectors may be expressed in terms of 4 as
follows:

t = cos 4 i + sin 4 k

 z.ze!
dtn= � = � sin4 i+cos4k
af



 a! Definition Diagram

p cos $

 b! Buoyancy effects on a curved element.

Fig. 2.4 - Illustrations for an Element from a

Submerged Cable

8 hp si

 i! Element fully exposed to water

0+<0

P+hP

 ii! Resultant force from pressure
forces on ends.
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Hence,

+ 1 z+z ! tl = ~ t +  z+z ! ~t
sp  o o ap

= ~ t + {z~z ! � ~3Z " at

P ay ap

= sin g  cos g i + sin < k!

+  z*z ! - sin 4i + cos 4 k! +
o ap

Substituting this into �.25! and noting that 1 - sin 4 = cos- 2 2

F

dp =yA � cosy+ {z+z !~  - sin% i+cost k!
-N

= � v A cos 4 � {z+z ! ~ n
o ap

�.27!

Thus, as stated before, the buoyancy force on an element depends

on its inclination g, its depth  z+z ! and its curvature ~ and is
0 aa

directed in a direction normal to the cable.

A heuristic but more physical approach of computing the buoyancy

force on an element is as follows. Consider the curved element shown

in Fig. 2.4 b!. The buoyancy. force on the element if the ends of the

e'lementwere exposed to water is shown on the 'left. The vertical buoy-

ancy force can be resolved into tangential and norma'l components

8 Ap sin g and 8 hp cos < respectively. 'The resultant force on the
0 0

element due to the pressure forces on the ends is shown on the right,

and both tangential and normal resultants hP and K4  neglecting sec-

ond order terms! exist. The pressure forces on the sides of the element

are essentially normal to the cable axis. Since the total normal force

on the element is 8 z p cos y, the resultant of the pressure forces act-
0

ing on the sides of the element is 8 Ap cos y + PA4. If there were no
0

pressure forces on the ends of the element, then this normal component
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would be the only force present due to buoyancy. In the limit, the

buoyancy force per unit length is 8 cos  I! + P ~ , where P = Y Az and0 ap'
B = Y A, yielding the same result as that obtained previously by more

rigorous means.

Buo anc forces in finite se ment modellin

Many numerical techniques for the static and dynamic analysis of

cable systems approximate the cables as finite segment models  see Fig.
2. 5 a !!. In such models each segment is assumed to be straight  i.e.,
zero curvature! so that the uniformly distributed normal buoyancy force

along its length is simply YA cos  t, where  t! is the angle of the axis

of the segment to the horizontal. The buoyancy contributions due to

curvature  which have been overlooked by some authors! appear as concen-

trated forces at the segment junctions.

Consider the corner element 8 Bl 82 of fig. 2.5 b!. The vertical
buoyancy force if the faces 8 8 and 8 8 were exposed to the water would

be � YV k where V is the volume of the element. The concentrated buoy-
e e

ancy force at 8, F., can be obtained by subtracting  vectoriallv ! the non-
i

existent pressure forces in the end forces from - YY k. For most prac-
e

tical purposes the volume of the corner element may be neglected, in

which case F = 2vA z.tz ! sin  P!=vA z.+z !ah, where z., z and a0
are as defined in Fig. 2e5 and h I! is assumed to be small. The force F,.
bisects the angle ABC between the adjacent segments of the cable.

E uilibrium e uations

The equilibrium equations for the element may be obtained by adding

the buoyancy term into the second equation of �.22! to yield

+ w sin  t = 0>T

ep
�.28!

T + YA z+z ! > +  w � YA! cos 4 = 0
o ap

Goodman and Breslin �976! first demonstrated the considerable simp'lifi-

cations obtained by introducing the "effective tension" defined as



 a! Finite segeent Iodel of a cable

~A
.1

corner element

YA z,.+ zo!

YA z. + z !

 v! The i junction

Fig. 2.5 - Buoyancy Effects in Finite

Segment Models
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T = T+YA z+z !
e 0

�.29!

Using the fact that dz/dp = sin 4, the equations of �.28! in terms

of T are
aT

3p
'+  w -VA! sin i = 0

�,30!

+  w - 'VA! cos y = 0
e ap

Multiplying the above equations by and observing that w = mg andd

d
s s

A dP- = A  the cross-sectional area of the unstrained cable!, the equi-
librium equations in terms of s are found to be

HT

ps
+  mg - yA ! sin iIh = 0

0

�.31!

T ~~+ mg-yA! cosg= 0
e 3s 0

For an extensible cable, in addition to the equilibrium equations

the equations of elasticity also need to be satisfied. Consider again

the element of the submerged cable located at  x,z!. In addition to the

tensile forces acting in the longitudinal direction, the element is also

subjected to lateral hydrostatic pressure forces. In cylindrical coor-

The similarity of the above equations to the equations of �.24!

suggests that for an inextensible cable, the profile in water is also

a catenary and the required solutions may be obtained by replacing

W = mgL by W =  mg - ~ A ! L in equations �.'l5! to �.20! with EA ~

However, the tensions and the end forces computed from equations �. 15!,

�.19! and �.20! will be the effective forces and not the actual forces.

The actual tension is obtained by using equation �.29!. If an end of

the cable is fixed to a point on the free surface of the water  i.e.,

z = z = 0!, then at that point the effective tension and the actual

tension are identical. Equation �.29! also suggests that if the cable

extends to a depth z where YAz is greater than T , then it is requirede'

to carry compressive forces. This aspect will be discussed in more

detail in Section 2.4.
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dinates  r, 8, z!, the stresses at the point  x,z! are

- Y Z+Z !
e 0

�.32!
T

z

Assuming that the cable is a linear elastic solid with Young's modulus

E and Poisson's ratio v, the .longitudinal strain of the element is

z 3s 1 E X-+ ~ z + zJ!d 1 T

0

� 33!1 e A

o 0

The solution of equations �.31! and �.33! is canplicated by the
appearance of z in the above equation. However, an interesting result

is obtained for an incompressible cable for which v = 1/2.

Since ~ = ~ = 1, equation �.33! may be reduced toA ds

o

T

m-
0

T - "EA  f - 1! �.34!or

The equations governing the submerged incompressible cable are now iden-

tical to the equations for an extensible cable suspended in air  equa-

tions �.24! and �.13!! with the weight of the cable, mg, replaced by

solutions for x, z and T may be obtained from equations �.15! to �.20!.
e

As for the inextensible cable, the real tensions may be computed from T
e

using �.29!.

 mg - YA ! and the cable tension T replaced by T . Thus it may be deducede'

thatthe profile of the cable is approximately an elastic catenary. The
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Differences between a submer ed cable and a submer ed chain

A rather subtle point that is worth noting here is the basic dif-

ference between the behavior of a submerged inextensible cable and a sub-

merged inextensible chain. For an ideal chain, two adjoining links touch

only at a point. Hence each link is essentially completely exposed to

water, and the buoyancy force on it acts vertically upwards. Globally

the chain may be assumed to behave like a cable with a reduced weight of

M' = mg - B , where 8 is the vertical buoyancy force per unit length of
0 0

the chain. The tensions and end forces computed from equations �.15!,

�.19! and �.20! would in this case be the actual forces.

The simplification that occurred for an incompressible cable does

not apply for an incompressible chain for which equation �.34! holds,

but equations �.31! do not. The equilibrium equations for this case are

obtained by replacing mg in �.'24! by  mg � B !, where 8 is the vertical
0

buoyancy force per unit length of chain.

Forces at the ends of cables

It is convenient to idealize the connections at the ends of the

cables as shown in Fig. 2.6. The cable is assumed to be attached to the

buoy or the seabed by an infinitesimally thin strand. Pressure forces

directed along the cable axis exist at the ends of the cable. Thus, if

the tension in the cable at point a is T , then the tension Tl in the
strand is T = T + yAz . Similarly at b. T = T + yA z +zb!. By com-1 a o' 2 b o b

paring these expressions with equation �.29! it can be seen that Tl and
T2 are the effective tensions at a and b. For realistic connection de-
tails, localized forces and moments may exist in the connection, but the

resultant force exerted on the buoy  or the seabed! is still the effective

tensions. Hence the force resisting external forces on the buoy is the

effective tension and not the real tension in the cable.
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z 8

Fig. 2.6 - Forces at the Ends of a Cable

 a! Vertical buoyant force only  b! Horizontal force on cable

Fig. 2.7 - Submerged Cables in Compression
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2.4 Cables in Com ression

It is commonly assumed that cables cannot sustain compression. How-

ever, when sufficiently large lateral conf1ning pressures are present,

cables are able to carry compressive forces  e.g., a long slender rein-

forcing bar in a reinforced concrete column!. In the case of a cable
submerged in sufficiently deep water, the effective tension in it can be
smaller than the quantity YA z+z ! so that, by equation �.29!, the actual

0

tension in the cable is less than zero �.e., the cable is in compress1on!.
Note, however, that for incompressible cables the axial strain is propor-

tional to the effective tension and not the real tension. Thus, although

the cable may be in compression, the lateral hydrostatic pressure is large
enough such that the "squeez1ng" action due to it produces posit1ve axial
strains.

As an example consider a buoy moored by a single cable in deep water
as shown in Fig. 2.7 a!. It is assumed that the pressure force on the
upper end of the cable is larger than the total upward force 8 on the buoy.
The cable is thus in compression at point a and the compressive force in-

creases along the cable due to its self-weight.

Now consider a lateral force F applied on the cable  as in Fig. 2.7 b!!.
The presence of the  pressure-induced! concentrated force PB enables
po1nt c in the cable to be in equilibrium. Note that although the config-
uratiors shown in Fig. 2.7 satisfy equilibrium and on intuitive grounds
seem correct, they may not be stable configurations. A rigorous stabil1ty

analysis will not be attempted here.

Profiles of inextensible cables when com ression is imminent

As mentioned in the previous section, submerged inextensible cables
have catenary profiles. The smallest tension in such a cable occurs at
the point of relative minimum of the catenary. The re lative dimensions
of the catenary profiles to the depth of submergence are examined here to
find the profiles of cables that have compression 1mminent in them. This
is, however, not a critical condition, since it is believed that the cables
are able to sustain this compression.
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Consider the inextensible cable depicted in Fig. 2.8. The actua'l

tension at any point of the cable is given by

�.35!T ~ T - YA z+z !
e o

where  see Section 2.1!

T ~ H cosh   - x! �.3e!

and H is the solution of

�.37!

Also, from equation �.7!

d = � cosh

The value of T is smallest and  z+z ! is largest at point B. Hence
e 0

from �.35! the real tension in the cable attains a minimum value at

B and is given by

T . H - yA  d+ z !

profiles for which T ~ is just equa1 to zero are of
minThe limiting

interest.

For a study of the parameters defining the critical profi'les, it

is advantageous to use nondimensional variables. Noting that

m Ps g ~sA
. where p is the density of the cable  typfcally steel!

~w"g pw

and p is the density of the water, equations �.37! and �.38! may be
written as
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Profiles 8eing Studied
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L
sinh 8= g � o �.40!

a/2
�.41!

cosh 8 - 1

  s 1! k/2
w o

Q

n
e

where

H

yXP+~z
and

For given L /k,H is found from �.40! and d from �.41!. If isX/2
0 d ' x/2

also known, then since ~
0

, H can be computed

from the expression for g. The limiting condition T . = 0 occurs when
min

H = 1 and for H < 1 the cable is in compression over part of its length.
Note that the limiting profile is independent of the cross-sectional area
of the cable.

The values of < , ~ , the angle of the chord to the vertical 4L a/2

and the angle of the upper cable end to the vertical a  see Fig. 2.9!
for the limiting profile are given in Table 2.1 for various values of

A plot of ~ vs. ~ is presented in Fig. 2.9  where � = ~0 R/2 o Ps 7.85
T22

7.7 is used!.
z

The results show that for small values of � the critical profiles
d

are very steep and will seldom be realized in practice. However, for large
zo

values of ~ the critical profiles are more realistic. Thus for deeply
submerged buoys it is possible to have the mooring lines in compression
over part of their length.



-25-

120 o100804020

a/2

6
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Table 2.l; Parameters of the critical profiles for
Z

various values of
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CNAPTER 3

STATIC ANALYSIS OF SUBMERGED MULTI-LEG CABLE-BUOY SYSTEMS

3. 1 Introduction

Initially the methodology is developed to analyze the system under

a point load applied at the buoy. The approximate treatment of the drag

forces induced on the cables by a uniform current profile is then investi-

gated.

3.2 The Tan ent Stiffness Matrix for a Cluster of Cables

First consider the cable shown in Fig. 3.1 a!. Assume that point B

is fixed and that the stiffness matrix for small displacements of paint A

is required. The equations defining the horizontal and vertical forces,

H and V, at A implicitly in terms of the cable properties and geometry are

 see Section 2.2!:

0 0 J . -1 V . -1 V-W!< = � +   sinh  -! � sinh  ~!! �.1!

2 1/
1+�1! � 1+ ~!

WL U 1 HL
h = EEEQ  W-r!+~o �.2!

Various methods exist for the static analysis of a cable-buoy sys-

tem cansisting of a buoy  submerged or surface-moored! attached to the

seabed by an array of cables. An accurate analysis that a'1lows for vari-

able current prafiles and cable properties can only be performed by usinq

finite element techniques. The aim of this chapter is to develop a simpli-

fied, approximate analysis procedure for situations where the cables have

constant properties and where the current profile may be assumed to be uni-

form. The numerical technique derived herein treats whole cables as single

elements, and hence requi res much less storage requi rements than finite

element techniques, thereby facilitating the use of micro-computers to ob-

tain approximate solutions.
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t"

xl x2  a! Definition diagram
t

Ap

 b! Local and global coor-  c! A Typical cable cluster
dinate systems

actual profi1e

 d! Approximation when cable lies partially on the seabed

Fig. 3.1 - !11ustrations for Derivation of
langent Stiffness Matrices
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The stiffness equation in the x2 direction is uncoupled from the stiff-
ness equations in the x and x3 directions. To obtain the stiffnesses
i n the latter two directions it is easier to first determine the flexi-

bility matrix and then invert it  Irvine, 1981!.

Equations �.1! and �.2! may be written as

a = f  H,V!

h = g  H,Y!
�. 3!

so that

dk = ~ dH + ~! dVaf af

dh = dH + ~ dV
�.4!

In matrix notation

dH

� F

dh dv
�. 5!

where

F =

31 33

is the flexibility matrix for displacements in the xl and x directions.
Evaluating the individual terms

3f o o
L L

f = � = � +�
11 BH EA W

»nh  <! � .inh   � !
�.e!

Y/H

1 +  V/H 
 1 +   Y-W!/H!

2 -1/2 2 -1/2
 �! � 1   !3f o

f
13 3Y

�.7!
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 v/H!

1 +  V/H!

The stiffness matrix is the i nverse of the f'lexibi lity matrix. Thus

kl 1 k13
1

Bet F �.10!
k33k31

ln the x2 direction the stiffness of smal'1 displacements is simply k22= H/R.
Thus the complete tangent stiffness matrix at A is

kll 0 k13

0 k22 0

k31 0 k33

Now consider the coordinate axes shown in Fig. 3.1 b!. The local

coordinate system is  xl, x2, x !, while the global coordinate system is
 x, y, z!, where the x3 and z axes are taken to be identical. The trans-
formation from local x < to global x coordinates may be described by a

g
transformation matrix' R defined by

x =Rx

or

 For purposes of calculation it is best to replace the inverse hyperbolic
-1 2 1/2sine by its logarithmic representation, namely, sinh x = Rn  x + �+x ! ! !.
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sin e

cos e

cos e

-sin ex2or

�.12!x3

R 1 RT

x = RT

g

Since

If the tangent stiffness matrix for the cable is K in the local system
and K in the global system, then

-g

K = R K R
g R

k13 cose

k13 sine

k33

�.13!

Note that in general thewhere k», k13 etc. are as def ined in �. » ! .
tangent stiffness matrix is not symmetric.

For a cluster of cables meeting at a point  see Fiq. 3.1 c!! the
global tangent stiffness matrix for small displacements of the common
apex may be obtained by determining the global stiffness matrix  through
the local stiffness matrix! for each cable, and then summing all of these
matrices.

For cases such as surface-moored buoys, where the displacement of
the apex is constrained in the z  or x3! direction, the 2 x 2 tangent
stiffness matrix corresponding to displacements in the X and y directions
consists of the first two rows and columns of the 3 x 3 matrix of �. 13!.

k» "' ' ' "22 "" '2 . 2

 kl k22 sine ctOSe» 22

k31 cose

 k» - k22! sine cose
. 2 2

kll sin k22
k31 sine
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3.3 Static Anal sis Usin a Tan ent Stiffness Solution Procedure

The prob'tern to be analyzed here is that of a submerged cable-buoy

system acted on by a point load at the buoy. This system exhibits a
stiffening type of nonlinear behavior. That is, the increment in dis-

placement for constant increments of applied load becomes successively

smaller as the buoy displaces from its initial equilibrium state. It

is assumed that the cables remain elastic and hence the nonlinearity is

solely geometric. There are various iterative and incremental solution
techniques that may be used to solve such a problem.

The method used here is an iterative procedure that utilizes the

tangent stiffness matrix of the cable cluster, and is similar to the
well-known Newton-Raphson method for the solution of nonlinear equati ons.

A procedure by which the tangent stiffness matrix of a cable cluster
can be computed was outlined in the previous section. This was based on
the assumption that the cable profiles were catenaries. The profiles
of submerged cables are catenaries only if they are either inextensible
or incompressible  as shown in Chapter 2!, and since the tangent stiff-
ness matrix of the submerged cable cluster is required in the analysis
technique developed herein it is assumed that the cables meet one of
these requirements. The weight W used in the previous section is thus
the effective weight,  mg - YA !L , and the forces H and tt are the effec-

0 0
tive forces corresponding to the effective tension at the upper end of

the cable  see Section 2.3!.

The possibility of a long cable lying on the seabed for part of its
length is also neglected in determining the tangent stiffness matrix and
the end forces of that cab'te. Fig. 3.l d! shows the profile assumed in

computing the stiffness and end forces of such a cable. The slight dis-
crepancy in the stiffness matrix is not critical since it alters only the
"path" to the solution. The discrepancy in end forces when checking equi-
librium at the final displacement is of more importance, but this differ-

ence is not expected to be too significant.

Fig 3.2 a! shows a one-dimensional representation of the solution
technique. The applied 'toad is gA and the first estimate of the deflec-
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-deflection
urve

xact solution

u3

hQ
2

'Q = Qn-i - oA

QA

* 1 2 3u U~l u U U =u

 b! Strategy used when convergence is not obtained

Fig. 3.2 - One-Diroensional Representations of Solution Technique

Q3
n

Q2
n

Qi
n

Q2

QA

 a! Tanqent stiffness solution procedure
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tion, u , is found by using the initial tangent stiffness. The load

Ql required to maintain the system at equilibrium is then computed. The
tangent stiffness at point 1 is used with the unbalanced load  QA � Ql!
to obtain the improved estimate of the deflection u2. The iteration is
continued until the n estimate u is such that the unbalanced loadth

n

 QA - Q�! and the increment in displacement  u - u 1! are sufficiently
smal l.

The problem to be solved is a three-dimensional one, but the solu-
tion procedure is essentially the same. The loads Q and displacements
u are in this case vector quantities and the tangent stiffness is repre-

sented by a 3 x 3 matrix K. The iteration may be expressed as

n n-1 n-1 A n-1
u =u +K  Q -Q ! �.14!

n "n-1< [QA - Q�I
/"n/

Fl and Q < c2
I AI

�.1S!

where ~ ~ represents the magnitude of the enclosed vectors and <1, <2
are specified error limits.

The computation of Qn requires the horizontal and vertical effective
forces H and V in local coordinates  see Fig. 3.1 a!! to be calculated

for each cable in the cluster, when the common apex is located at u�.
The values of H and V are also required to compute K . Eo find thesen'

forces the two nonlinear simultaneous equations �.1! and �.P.'! need to

be solved. In general, this needs to be done numerically and a two-

dimensional Newton-Raphson scheme is one possible technique. Writing

�. 1! and �.2! as
F H,V! = f H,V! � a

G H,V! = g H,V! - h
�.16!

where QA is the applied load, u the n estimate of the displacement,th

n

1 is the load that is required to maintain the system at equilibrium
at the displacement un 1, and K� 1 is the tangent stiffness matrix at un l.
A suitable check for convergence is



The Newton-Raphson iterative scheme may be expressed as

hk

�.1~!
V

n
V n-1 n-1

G F� � F Gv
ak s~

with

F Gk - G FH

where F = ~ = ~ etc.  same as �.6! to �.9!! and each of the func->F >f
H

tions are evaluated at  Hn 1, Y� 1!. A suitable convergence criterion
is

2 1/2 ~k� 1
 +  ~Y�1

�.18!

H +Y�

Thus for each step of the tangent stiffness solution procedure, a

Newton-Raphson iteration is required to compute H and Y. One drawback
with the latter technique is that fairly good initial guesses of H and
V are required for convergence. This problem can be overcome by using
the following strategy. At the n step of the tangent stiffness pro-th

cedure, the values of H and V obtained at the  n-1! step are used asth

initial guesses. If the Newton-Raphson procedure diverges or does not
converge within a specified number of iterations, then the increment in
load from the  n-1! step to the n step,  QA - Qn l!, is halved, unth th

is recomputed and calculation of H and V is attempted. This can be re-
peated as many times as is necessary to obtain H and V at some displace-
ment ~ u I > I u ll . Fig. 3.2 b! shows a one-dimensional representation-nl I -n-ll '
of a hypothetical case. From the point  n-1! the value of u is obtained,

1but Q� could not be obtained because the Newton-Rapson iteration to
compute H and Y for one of the cables in the cluster did not converge.
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Then the load increment is halved and u computed. Again the Newton-2
n

2
Raphson iteration failed for a cable and hence g could not be found.

n

The load increment is halved again and u calculated where the Newton-
n

Raphson scheme converged and IP was able to be found. The value of u
n n+l

is then obtained from u , g and the tangent stiffness at u .n' n n'

When starting the problem, an initial position needs to be prescribed

for the buoy. If the initial equilibrium position of the buoy  i.e., when

no lateral loads are acting! is known, then this may be used, but any other

position is equally valid. If the end forces in the cables are unknown

at this configuration, then initial guesses need to be supplied and the

correct va1ues of these forces determined by solving equations �.1! and

�.2! before the tangent stiffness iteration procedure can be commenced.

It has been found that overestimates of the horizontal and vertical forces

 M and V! at a cable end sometimes results in divergence or poor convergence.

When the prescribed initial position of the buoy is roughly in the center

of the area defined by the anchor points of the cables on the seabed, ini-

tia1 guesses of V = 0.5W and H = 0.1W to 0.2W have been often found to lead

to convergent solutions  where W is the total effective weight of the corre-

sponding cable!. Note that the initial equilibrium position of the buoy

can also be found, if required, by specifying the buoyancy force on the buoy

as the only applied load.

3.4 A roximate Treatment of a Uniform Current Profile for Flat-Sa Cables

The presence of draq forces on the cables due to sea currents add com-

plexity to the problem and in general the analysis requires a finite element

solution technique. An approximate solution is presented here for the spe-

cial case when the current velocity profile is invariant with depth and when

the sags in the cables are small. The aim is to obtain equivalent loads that

are to be applied to the buoy due to drag forces on the cables.

Consider a cable segment located in a velocity field as shown in Fig.

3.3. The drag forces per unit length of the segment are due to the normal

 in-plane and out-of-plane! and tangential velocity components with magni-
tudes given by  Berteaux, l976!:
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 V cos8» n II!1 2  in-p3aee!

 out-of-plane!C d V sin e!
2

FT = p p Cf m d V cos 9 cos tI!!1 2

�.1g!

where p is the density of the water, C and C are the normal and tan-

gential drag coefficients, d is the diameter of the cable, V is the
current velocity, and e and y are the plan and elevation angles between
the cable axis and the current direction. For most cables Cf «C� i.e.
C = 0! and the tangential drag force may be neglected.

f

For a flat-sag cable, an approximate expression for the profile

can be found with the assumption that the weight of the cable is uni-

formly distributed along the chord connecting the cable ends. It is con-

venient to use inclined coordinates x and y as shown in Fig. 3.4.

First consider the profile of the cable under self-weight alone.

Equilibrium of forces in the y-direction yields

H x! d!. - w !. - x! cos 8d
�.2O!

where H x! is the x-component of cable tension, < is the chord length.

g is the inclination of the chord to the horizontal, and w the effective

weight of the cable. Equilibrium in the x direction gives

�.21!H x! = k + w x sin g

where H = H ~!.

The cable behaves approximately like a taut string to the out-of-

p'fane normal load on it. Thus approximately half the total load will be

transferred to each en' The out-of-plane deflection of the cable will

be neglected here. The in-plane normal load is nonuniform and varies in

direction over the length of the cable. However, a reasonable approxi-

mation is to assume that it is uniformly distributed over the chord length

and is normal to H. The additional deflection due to the in-plane normal

load p is denoted by v. The increase in H x! due to p is a constant, h,
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F

Plan Elevation through plane of cable

Hl= H+h+wasin 81

=  H+h!

Fig. 3.4 - In-plane Loading on an Inclined Flat-sag Cable

Fig. 3.5 � Displacements of an Element of the Cable

Fig. 3.3 � Drag Forces on a Cable Element

oad per unit
rpendicular

= effective
weight

= mg -'yA
0
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since the additional load is applied only in the y-direction. Equi-
librium of forces in the y-direction now yields

 H x! + h! ~  y+v! = w ~~ - x! cos 0 + p ~~ - x! �.21!

Using �.20!, �.21! and neglecting the second-order term

dv
p ~ � x! h w  - - x! cos g

2

s tl I
�.22!

To complete the solution, h must be evaluated. This is done by
using a cable equation that incorporates the cable elasticity to oro-
vide a closure condition relating the chanqes in cable tension to the

changes in cable geometry. The displacement of' an element of the cable
is shown in Fig. 3.5. If ds is the original length of the element and

ds is its new length, then

ds = dx + dy
2 2 2

ds =  dx + du! +  dy + dv!

�.23!

where u and v are the x and y components of the displacements, respec-

tively. For the flat-sag cable the fractional change in length, cor-
rect to the second order of small quantities, is

ds - ds du dx dv dv 1 dv �.24!

I
ds - ds

EA ~s
0

�.25!

But, to second order, > = h d , so that the cable equation for theds

element becomes

The desired form of Hooke's law for the incompressible cable, with

denoting the increase in effective tension and not the increase in actual
tension in the cable, is  from �.34!!
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h ds/dx! du d dv ] dv3 2

~E Bx |Ix dx + 2 Tx �.2e!

It is convenient to use the cable equation in theintegrated form

0 0 0
�. 27!

ds 3
where I =   � ! dx is a quantity only a little greater than the chord

e dx
0

length g,.

 ~H~! C tan g
H w

 ~! tan csin It + D
0

�. 28!

where

= 2 + ! - �Y+1! Rn ] + � !4~ y+1! Y

2zy+~ �Y '<-"
D = an  I+-! � �  - !

y 8

H
Y

w csin 8

Equation �.28! is arranged in nondimensional form for convenience. In

determining h the value of L may be approximated by <.
e

The in-plane loads applied on a buoy attached to the upper end of

the flat-sag cable in a uniform current is thus H  = H + h + w g,sin 0 !
1

Although the two terms on the right-hand side of �.27! can be evalu-

ated using �.20!, �.21! and �.22!, little error is introduced by

using the !inearized version of �.27!  i.e., neglecting the last term!

when the in-plane normal drag forces are small compared to the existing

forces  i.e., self-weiqht and initial tension!.

Substitutinq for ~ and ~ from �.20! and �.22! and performingd dv
dx x

the required integration in the linearized cable equation, the required

quantity h can be determined from
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and Vl, with directions that are opposite to the reactions at point A
in Fig. 3.4. The values of H and Vl may be estimated as described sub-
sequently. Once H is known, h can be obtained from �.28! and thus the

in-plane forces at A can be determined.

Consider the cable shown in Fig. 3.6 loaded with an effective weight

w. The profile of the cable is a catenary  incompressible cable! and the

effective forces H and V can be determined by solving simultaneously

the equations analogous to �.1! and �.2!. The force components in the

x and y directions are

II I
H = H cos 0 + V sin p

It I I
V =-H sin 8+V cos 8

H is the x-component of the reaction at 8 and is thus given by

II
H = H - wpsing �.3O!

When a uniform load of intensity p per unit length is applied normal to

the chord in the neqative y-direction, the reaction in the y-direction

at A is

Vi =V +

Note that p is the same as F<I of �.19!.

Also note that for the typical cable cluster shown in Fig. 3.7 the

in-plane normal drag on the cables causes an increase in tension in

cables 1 and 2, but a decrease in tension < n cable 3. The resultant of

all the equivalent loads at the buoy due to the in-plane and out-of-plane

drag forces on the cables, together with the buoyancy and drag forces on

the buoy, should be in equilibrium at the final displaced position of the

buoy.

The technqiue described in Section 3.3 may be adopted to obtain a

solution for this case. However, the tangent stiffness matrix of each

cab1e  and hence the cluster! is not easy to evaluate. Although the for-

ces at point A in the cable of Fig. 3.4 are dependent only on a and g,

the two equations for Hl and Vl are implicit  i.e., f H1,Vl,a, 8 ! = 0,
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I

V effective weight
H =  H � za sin 8!

Fig. 3.6 - En4 Forces Due to Self Height Only

Plan

Schematic

Fig. 3.7 � A Typical Cable Cluster
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g H1,V1, g g! = 0 ! , which makes the extraction of a tangent stiff-
ness or flexibility matrix difficult.

An alternative, ad hoc, way of proceeding is to apply loads at the

buoy to account for the current drag on the cables and then proceed with

the analysis as if no currents are present. lhis will give an estimate of

the required solutions. The loads applied at the buoy due to the effective

weight of a sing1e cable are H and V  see Fig. 3.6! computed from �.29!.

The in-plane loads due to the effective weight and the in-plane current

drag are Hl and Vl  see Fig. 3.4!. Thus the in-plane loads to be applied
II II

at the buoy due to current drag alone are h =H � H ! and ~  = V � Y !. Note
I 2 1

that in this case it is best to first compute the equilibrium position of

the buoy when no current is acting, and use this configuration to estimate

the equivalent torces on the buoy due to current drag on the cables.

Summar of A roximate Anal sis under Uniform Current

The approximate analysis technique described in this secti on is sum-

marized here in sequential steps. Note that in all calculations the effec-

tive weight of the cables should be used.

I. Obtain solution with no current forces.

�! Decide on an initial position for the buoy and guess the horizontal

and vertical in-plane effective forces at the upper end of each cable.

Solve equations �. 1! and �.2! using these initial guesses and the

Newton-Raphson scheme described in Section 3.2 to obtain accurate

values of these horizontal and vertical effective forces.

�! Specifying the applied force at the buoy gA equal to the vertical
V

buoyancy fierce on the buoy, find the equilibrium position of the buoy

when no lateral loads are acting by using the tangent stiffness pro-

cedure described in Section 3.3. Note that the initial unbalanced

load is QA � Q, where g is the resultant of the horizontal and ver-
tical cable forces computed in �! above. Also compute the horizon-

tal and vertical effective forces H and V in each cable in the equi-

librium position.
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II. Obtain solution when current loads are actin

I Y
�! Using the quantities H and V for the cables in the equilibrium

position without current loads, compute for each cable

 i! H and V from �.29!

 ii! H andV1 from �.30! and �.31!
 iii! h using �.28! and H = H + h + w 2, sin g

ll ng iv! H =W -H =handVI=V -V
I 1 1

 v! out-of-plane forces H* which is half the total out-of
0

plane drag force on the cable.

* *
�! Add vectorially the contributions -H ~ -V and -H from all cables

I I o

together with the buoyancy and drag forces on the buoy to obtain

the resultant applied force  jA.

�! Now that the drag forces are included into gA, the resisting forces
I

in each cable are the horizontal and vertical forces H and V calcu-

lated in I�! above. The resultant of these is g.

�! Use the tangent stiffness technique described in Section 3.3 with

 }A � g as the initial unbalanced load to compute the approximate
static displacement of the buoy.

�! The effective tensions in the cables at the displaced position can

be estimated from �.15! and from this estimates of the real cable

tensions can be obtained usia �. 29!.

3.5 Exam le � A Tri-moored Subsurface Buo

Data

1! Coordinates of anchor points:

 -100, 0, -705! m

�0, 86.6, -702! m

�0, -86.6, -700! m

Point 1

Point 2

Point 3

The static analysis of a tri-moored subsurface buoy is presented

here to exemplify the analysis procedure described in the previous sections.

The plan view of Fig. 3.8 shows the position of the anchor poi nts. The

required data is given below.
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Anchor point for cable 2

12
Current

X1 X

120

3

Plan Yiew

free surface

current
ble 3

cable 1

cable 2

Elevation

Fig. 3.8 - Definition Diagram for Numerical Fxample
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2! All cables are identical having the following properties:

Diameter

= 0.7

3! Properties of the spherical buoy are:

Outer diameter

= 0.7

4, A current of 1 m/s � knots! is acting in the positive x-

direction.

5! z-ordinate of free surface = 300 m.

Acceleration under gravity, g = 9.81 m/s
2

Density of sea water = 1020 kg/m .3

A lied load on buo

Net upward force

= 2.5 kN

= �500, 0, 95700! N

Drag force

.'. Applied force

Youngs' modulus, E

Length, L

Density

Normal drag co-
efficient, C

Meight

Drag coeffi-
cient, C�

= 12.7 mm  >"!1�

= 172.4�0!9 Pa
= 500m

= 7850 kg/m
3

= 3.0m

= 43 kN  i.e., 20 mo thick steel shell!

= weight of water displaced by buoy
� weight of buoy

= 95.7 kN
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Solutions

 a! Null current  i.e., no dra forces!

Initial guess for position of buoy = �, 0, -300!.

With the only applied load being a vertical upward force of 95.7 kN,

the equilibrium position of the buoy =  -12.18, 5.23, -211.94! m .

Maximum stresses in the cables  under the actual tensions and not

the equivalent tensions! in the equilibrium confiquration are:

Cable 1 � 314 MPa

Cable 2 � 249 NPa

Cable 3 - 206 NPa

 Note: 414 NPa = 60 ksi!.

 b! Dra forces on buo onl

Neglecting the drag forces on the cables, the equilibrium position
of the buoy =  -11.23, 5.21, -211.93! m.

Maximum stresses in the cables in the equilibrium configuration are:

Cable 1 � 375 Mpa

Cable 2 � 218 Npa

Cable 3 - 175 NPa.

 c! Dra forces on buo and cables,

Using the approximate treatment presented in Section 3.4, the

equivalent loads to be applied at the buoy due to current drag on

the cables are:

Cable 1 - �.7, 0. 0, -2.6! kN

Cable 2 � �.6, -0.4, 1.7! kN

Cable 3 - �.6, 0.5, 2.1! kN

Together with these forces and the drag force on the buoy, the equi-
librium position of the buoy =  -10.53, 5.26, -211.91! m.
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Maximum stresses in the cables in the equilibrium confiquration are:

Cable I � 424 MPa

Cable 2 � 194 MPa

Cable 3 � 160 MPa

Comrents

The results show that the excursion of the buoy due to the current

is small. This is to be expected, since the net upward force on the buoy

is much larger than the lateral drag forces. Buoys submerged to greater
depths will be heavier  since they wi] 1 have to withstand greater pres-
sures! and subsequently the ratio of horizontal to vertical loads on them
will be larger, resulting in greater excursions.

The effect of the drag forces on the cables is quite significant.
The horizontal displacement of the buoy and the increase in the maximum
stress in cable 1 due to drag on the cables are about 3/4 of the corre-

sponding quantities due to drag on the buoy alone.

Note that under the current load, the stresses in cables 2 and 3

are reduced from their initia'I values, while the stress in cable 1 is
increased. The stress in cable 1 only slightly exceeds 60 ksi, which is
a reasonable value for the maximum allowable stress.
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CHAPTER 4

APPLICATION OF STATIC ANALYSIS PROCEDURE TO OTHER CABLE SYSTEMS

The tangent stiffness solution technique developed in Chapter 3

can be applied to more complex cable systems with a larger number of

degrees of freedom. The two particular cases considered here are multi-

buoy systems and moored semisubmersibles.

4.'I Multi-buo S stems

For submerged or surface-moored multi-buoy systems the extension

of the ana1ysis procedure developed in Chapter 3 is quite straightforward.

Every additional buoy in a system proportionally increases the number of

degrees of freedom and hence the size of the tangent stiffness matrix of

the system. The analysis procedure remains essentially the same.

Fig. 4.1{b! shows an in-plane elevation of cable 5 and the equilibra-

ting end forces on it, As before, the two equations that relate the dimen-

sions p> and h5 to the end forces at the higher end H and V are of the
form

a, = f  H, V!

h5 = g  H, V!
�.1!

where the functions f and g are as specified in �.1! and �.2!. Assuming

As an example consider the two-buoy system shown in Fig. 4.1 a!.

In general the system has six degrees of freedom corresponding to the

x, y and z displacements of each buoy. The tangent stiffness matrices

for cables 1 and 2, for small displacements of buoy 1 in the x, y and z

directions, can be computed as described in Chapter 3  i.e. by first com-

puting the stiffnesses in local coordinates and then performing the neces-

sary coordinate transformations!. Similarly the stiffness matrices for

cables 3 and 4 for small disp'lacements of buoy 2 can also be determined.

Let these 3 x 3 stiffness matrices be denoted by K , i = 1, 2, 3, 4.

Cable 5 has to be treated differently because it results in coupling between

the two buoys.



 a! Schematic diagram

 b! In-plane elevation of cable 5

Fig. 4.1 - Two-buoy System
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that end 1 is fixed, the stiffness matrix relating the increments in

forces at end 2 to the increments of displacements at this end  in the

directions xl, x2 and x3! is

11 13

0 k22 0

k31 0 k33
�.2!

a 'f
C}

0
av

0 D � 0
H

R5
1
D

where D = � . g � ~ - g and each of the functions � etc. are evalu-a sf a. Bf
5V 4a AH

ated at  H, V!. Considerations of the equilibrium of the cable gives the

stiffness matrix relating the increments in forces at end 1 to the incre-

ments of displacements of end 2 as

Kl2 = � K22

The corresponding stiffness matrices for small displacements of

end 1 can be obtained by rewriting the equations of �.1! in terms of the
I I I I

forces at this end, H and V . From equilibrium H = H and V = W - V

where W is the total weight of the cable. Substituting for H and V in the

specific forms of the functions f and g, the fol'lowing result is obtained:

g,5 = f  H, W-V ! = f  H, V !

h5 = g  H, W-V ! = -g  H, V !
�.4!
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lhe function f H, V! and g H, Y! also have the following proper-

ties; -g  H, V! = -p  H , V ! ; ~  H, V! = - ~  H , V !
P~  H, V! = - PH  H, V !; Q  H, V! = Q  H , V !

where ><  H, V! means that the function � H is eva1uated at  H, V!, etc.3f Bf

By using the above identities and performing the necessary coordin-

ate transformation  since H is in the negative xl direction!, the stiff-
ness matrix relating the increments in the forces at, end 1 to increments

in the xl, x2 and x3 displacements at end 1 can be shown to be

11 13

Kll � 0 k22 0

k31 0 k33

where kll, kl2 etc. are the same va1ues as in �.2!. The stiffness matrix
relating the increments in forces at end 2 to the increments in displace-
ments of end 1 is

Let R be the rotation matrix describing the transformation of the

 xl, x2, x3! coordinate system to the  x, y, z! coordinate system, and let

1 1'1K = R K R

K2 - R K22 R

Noting that K stands for the tangent stiffness matrix of cab1e i  i = 1,

2, 3, 4! in the g1obal  x, y, z! coordinate system, the 6 x 6 tangent stiff-
ness matr ix of the entire system i s



-53-

�. 9!

 K +K +K!

The static solution procedure is essentially the same as that de-

scribed in Chapter 3. The iterative formula is  see equation 3.14!

-1

n n-1 n-1 A n-1

For large matrices K the inversion required above may be more efficiently

done by first solving the system of linear simultaneous equations

n-1 n-1 A n-1

to find Au� 1 and then obtaining

h n-1 n � 1

4.2 Moored Semisubmersibles

The static analysis of a moored semisubmersible is in general diffi-

cult due to the defomation of the structure itself under the buoyancy

forces and the forces applied by the cables. An iterative tangent stiff-

ness solution procedure can be readily applied to the problem if the semi-

submersible is assumed to be rigid.

1. 1 1
kI1 k12 k13

i i 1k21 k22 k23 ' > =1, 2, 3,4

k k31 32 33J

�.1'1!
K

Consider a rectangular semisubmersible attached to the seabed by

four clusters of cables as illustrated in Fig. 4.2. I et the tangent sfiff-

ness matrix of each cable cluster corresponding to increments of the x, y

and z displacements of the apex of the cluster be
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Elevation center of mass
platform

Plan

Fig. 4.2 � Rectangular moored Semisubmersible
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K = Lk ] , i = '1 to 6, j = 1 to 6 �.12!

where

n=l
i=1,2,3; j=l,2,3

i=4; j=l,2,3; p=3; q~j

i=1,2,3; j=4; p=i; q=3
~  - k + k� k - k !

b 3 4 i=5; j=l,2,3; p 3; q=j
2 -k -k +k +k !

'=1,2,3; j=5; p='; q=3

i=6; j=1,2,3; p=2; q=s=j; r=l
k.. =C 1J

i=1,2,3; j=6; pm=i; q 2; s=l

f,n
LW n=l

ab  -kl + k2 k3 + k4 	
rs rs rs rs J

i=4; j=6; p=r 3; q=2; s=l

i=6; j=4; p=2; q=s=3; r=l

t  k -k +k -k !
pq pq pq pq

- �" ,�I, ~"�,I

i "5; j=6; p= r3 j q2; s= l

i=6; j=5; p 2; q s=3; r=l

The complete system has six degrees of freedom, corresponding to the

three displacements u, v, w and the three rotations, g , 0 , 6 of
xz Qz xy

the rigid semisubmersible. T' he 6 x 6 tangent stiffness matrix, due to

the stif'fnesses of the four clusters only  i.e., neglecting, for the moment,
the bouyancy effects on -the senisubmersible!, can be easily assem-

bIed using the tangent stiffness matrix of each cluster. For example, a

smal1 rotation do lowers the points 1 and 4 and raises the points 2 and
XZ

3 by � dB . The stiffness terms corresponding to this rotation are the

coefficients of do in the forces F , F , F and moments M , M , Mxz x' y' z xz' yz' xy
required to obtain this rotation while all the remaining displacements

and rotations are maintained at zero. The assembled tangent stiffness

matrix is
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a 1 2 3 4  k33 k33 k33 k33 ! i=j=4

b 1 2 3 4~  -k33 k33 k33 + k33! =j=5

i~j =6

ab 1 1 2 2 3 3 4 4

Buo anc effects on the ri id semisubmersible

If the vertical upward buoyancy force on the platform in the ini-

tiaI rest position is included in the externally applied loads, the

excess buoyancy forces and moments due to displacement of the rigid semi-

submersible can be accounted for by replacing the water by equivalent

springs as shown in Fig. 4.3 a!. In the following derivations, the

rotations e and e of the platform are assumed to be small so that
xz yz

cos e = 1 and sin o = 0. As a result of this assumption, the forces

and moments exerted on the platform by buoyancy effects are linearly re-

lated to the corresponding displacements and rotations.

Consider again the four-leqged semisubmersible shown in Fig. 4.2,

The legs of the semisubmersible are cylindrical with radius R. The deck

is assumed to be sufficiently clear of the water so that it will never

submerqe. Displacements and rotation in the horizontal plane  u, v and

0 ! do not result in any excess buoyancy forces, A vertical upward
xy

~ 2
displacement of w results in an excess force F = -4~R w, where y is

Z

the unit weight of the water. The effects of rotation are slightly more

complex. Fig. 4.3 b! shows the semisubmersible under a rotation 8 . The
XZ

net buoyancy force from the two legs to the left of the origin is Fl, while
the force from the other two legs is F2. The distances to the line of
action of these forces from the z-axis are el and e2 respectively. The
buoyancy forces act through the center of volume of the submerged part



 a! Equivalent model accounting for excess
buoyancy forces

 b! Semisubmersible rotated about the origin

R b-a
". = S. <b+a!

y = 0
X c

f'b+a,
nter z L 2
volume

2

l6m b+a

~~ xc

 c! Center of volume of immersed portion of leq

Fiq. 4.3 - Buoyancy Effects on the Semisubmersib]e
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of the legs, Using the coordinates of the center of volume given in

Fig. 4.2 c!, and assuming that 8 is small,
xz

Fl = "R Y�h + ae�z!2

�.13!

F =mR Y�h - ae !2

2 XZ

The resultant counterclockwise moment about the origin is

XZ - Fl el+ F2e2

2Re�, a R 2Re

xz

- [-+ ~  � ! ]Yg1 a 2 4
2 R

Prior to the imposed rotation the net buoyancy force was >R Y and the
2

moment of this force about the origin was zero. Thus the excess buoyancy

force on the semisubmersibIe due to the rotation 8 is zero and the
xz

excess moment is M . Similarly for a rotation e, the excess momentXZ yz'
due to buoyancy is

L- ~ < -! ],Rb 2 4
yz 2 R

From the above results it can be seen that for the model illustra-

tions in Fig. 4.3 a! the translational spring has a stiffness k = 4zYR2

and the rotational springs have stiffnesses k = [ � + z  � ! ]YR anda 2 4

1 b 2 4
xz 2 R

k = [- + vr -! ] YR . The force-displacement relations due to the ex-
yz 2 R

cess buoyancy effects can be described by means of the diagonal stiffness

matrix  corresponding to u, v, w, 6, e, e !xz' yz' xy

K = [k.,] , i = 1 to 6, j = 1 to 6
-8 ij �.18!

8k33 = - kwhere

44 xz
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k~5 = - k8

and al 1 other k .. are zer o.
B

lj

A suitable analysis procedure is, again, the tangent stiffness tech-

nique described in Chapter 3. The tangent stiffness matrix of the com-

plete system is

�.19!K=K +KB
c 8

where K and K are as given in �.12! and �.18!. The iterative formulac B

to be used is

�.20!un � un 1 'AUn 1

where bu 1 is the solution ofn-1

n-1 n-1 A n-1

 Note that u =  u,v,w~exz i eyz ~ exyT

F
x

F
y

47rR !h - W
2

�. 21!3A=

� W xM

-WyM

M xy

If the total weight of the platform is W, the x and y coordinates of

the center of mass is xM and yM, the initial submerged length of the legs
is h  see Fig. 4.2!, the components of the current drag force in the x

and y directions is F and F , and the horizontal twisting moment due to

eccentricity of the drag forces is M , then the  constant! applied force

vector is
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4
Pl

4

a   pl + p2 + p3 p4!
z z z z

�.22!

b   pl p2 + p3 i p4!
2 z z z z

+ �  -P +P +P -P!l2 y y y yg-'

Thus, at each step of the iter ation g - q l represents the unbalancedA n-l
load.

If the x, y and z components of the force required to hold each

cluster at the configuration described by u l is P, P, Pz  i=1,2,3,4!,1 1 1
-n-l x' y z

 computed as in Chapter 3!, then
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APPENDIX A

A DESIGN PROCEDURE FOR MULTI-LEG CABLE-BUOY SYSTEMS

Outline of the Problem

The design problem of a submerged  or surface-moored! buoy usu-
ally consists of determining suitable dimensions for the mooring cables,

and the locations of anchor points in the seabed, such that the buoy is

located at a specified position  typically in a null current!. Addi-

tional constraints are that the maximum stresses in the cables and the

excursion of the buoy from the initial position should be within allow-

able limits under the design current  and wave! conditions.

This chapter deals with the preliminary design problem of obtaining

the dimensions of the mooring cables and the location of the anchor points.

Estimates of the excursion of the buoy and the maximum stresses in the

cables under design loads can then be obtained using the static analysis

procedure discussed in Chapter 3, to check whether the constraints are

satisfied. It should be noted that maximum cable stresses are sometimes

attained under dynamic excitation, and hence a dynamic analysis of the

system should also be performed. If the system does not satisfy the de-

sign constraints, then it needs to be redesigned with larger cables and/or
a different cable arranqement, resulting in greater lateral stiffness.

A Preliminar Desi n Procedure

The design procedure suggested here relies on having cable arrange-

ments that possess some symetry, in plan view, about a horizontal x-axis

 the direction of the dominant current, say!. Fig. A-1 a! shows the plan
views of two typical cable arrangements. The cables below the ~ -axis lie

along the lines of reflection  about the x-axis! of the cab'les above the
x-axis. Further, all the cables on the left side of the y-axis  group 1!
are restricted to have the same cross-sectional area Al, end forces Vl
and Hl  and hence also the angle 81 = tan Hl/Vl!  See Fig. 5.1 b!!,
Young's modulus El and Poisson's ratio >1, while the cables on the right
side of the y-axis  group 2! have corresponding quantities A , V , H ,
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4-ca bl e c 1 u s ter3-cable cluster

 b! In-plane elevation

e

profile

 a! Typical cable arrangements � plan view

anchor point

 c! The profile and anchor point

Fig. A.l � Definition Diagrams for Typical Cables

X 83 = 64
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p2, E2 and u2. Due to this particular arrangement, equilibrium of the
buoy in the y-direction is ensured.

The design procedure now consists of the following steps.

1! Choose the plan angles of the cables on one side of the x-axis

and the ratio Vl/V2.  These choices will usually be influenced
by the directions and magnitudes of dominant currents and waves!,

2! Choose the angle Bl and determine g2 so that equilibrium is satis-
fied in the z-direction. For example, in the four-cable cluster

of Fig. A-l a!, the angle g2  for cables 3 and 4! is related to
01 by

V2 cos g3
82= tan ~ 

1

+ cos

! tan B2  Al!

T. =  i = l, 2!, determine
Vi

i cos
3! Using the maximum cable tensions

suitable cable cross-sections.

4! The end forces V and H and the cable properties define the catenary

profile of each cable. Check that all profiles intersect the

seabed. The point of intersection of the cable profile and the

seabed is the anchor point for each cable. If any profile does

not intersect the seabed, then that profile is too shallow. De-

crease gl and repeat steps 2 to 4 until all cables intersect the
seabed.

x s! = ~ + � sinh   � ! � sinh   !Hs H . -1 V . -1 V - ws
WE, w H H

  ! =~ V-~!E q

H 1  V
 1  V ws


 A2!

In determining the anchor points in step 4 above, a numerical procedure

is required. Let a cable under consideration have self-weight w per unit

length, Young's modulus E and cross-sectional area A. Referring to Fig,

A-l a!, let the curve length AB be L and AC be L . If the end forces of A

are H and V, then the cable profile in terms of the unstrained Lagrangian

coordinate s is described by
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The curve length AB is L = � . If the seabed profile beneath the
2V

W

cable is given by z  x!, then by successively checking z � z for s = nhs,

n = 1, 2, ...  hs = Ttm say!, the interval in which the protile intersectsL

the seabed can be determined. By successive bisections within this inter-

val, the location of the anchor point can be estimated to the required

level of accuracy.

Note that this design procedure may not give the most economical solu-

tion, but it enables the buoy to be positioned  in a null current! at a

fixed location. It should be recognized, however, that accurate position-

ing in the offshore environment is often a difficult task and reasonable

accuracy is all that can be expected.
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Listing of Program

Sample Output from Program
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